Skip to main content Accessibility help
×
Home

Polycrystalline materials analysis using the Maia pixelated energy-dispersive X-ray area detector

  • Henry J Kirkwood (a1), Martin D de Jonge (a2), Daryl L Howard (a2), Chris G Ryan (a3), Grant van Riessen (a4), Felix Hofmann (a5), Matthew R Rowles (a6), Anna M Paradowska (a7) and Brian Abbey (a1)...

Abstract

Elemental, chemical, and structural analysis of polycrystalline materials at the micron scale is frequently carried out using microfocused synchrotron X-ray beams, sometimes on multiple instruments. The Maia pixelated energy-dispersive X-ray area detector enables the simultaneous collection of X-ray fluorescence (XRF) and diffraction because of the relatively large solid angle and number of pixels when compared with other systems. The large solid angle also permits extraction of surface topography because of changes in self-absorption. This work demonstrates the capability of the Maia detector for simultaneous measurement of XRF and diffraction for mapping the short- and long-range order across the grain structure in a Ni polycrystalline foil.

Copyright

Corresponding author

a)Author to whom correspondence should be addressed. Electronic mail: b.abbey@latrobe.edu.au

References

Hide All
Abbey, B. (2013). “From grain boundaries to single defects: a review of coherent methods for materials imaging in the X-ray sciences,” Jom 65(9), 11831201.
Abbey, B., Hofmann, F., Belnoue, J., Rack, A., Tucoulou, R., Hughes, G., and Korsunsky, A. M. (2011). “Mapping the dislocation sub-structure of deformed polycrystalline Ni by scanning microbeam diffraction topography,” Scr. Mater. 64(9), 884887.
Cahn, J., Pan, J. and Balluffi, R. (1979). “Diffusion induced grain boundary migration,” Scr. Metal. 13, 503509.
Chantler, C. T., Rae, N. A., Islam, M. T., Best, S. P., Yeo, J., Smale, L. F., and Wang, F. (2012). “Stereochemical analysis of ferrocene and the uncertainty of fluorescence XAFS data,” J. Synchrotron Radiat. 19(2), 145158.
Filipponi, A., Di Cicco, A., De Panfilis, S., Trapananti, A., Itie, J. P., Borowski, M., and Ansell, S. (2001). “Investigation of undercooled liquid metals using XAFS, temperature scans and diffraction,” J. Synchrotron Radiat. 8(2), 8186.
Fisher, L. A., Fougerouse, D., Cleverley, J. S., Ryan, C. G., Micklethwaite, S., Halfpenny, A., and Spiers, K. (2015). “Quantified, multi-scale X-ray fluorescence element mapping using the Maia detector array: application to mineral deposit studies,” Miner Deposit. 50(6), 665674.
Geil, E. C. and Thorne, R. E. (2014). “Correcting for surface technology in X-ray fluorescence imaging,” J. Synchrotron Radiat. 21(6), 13581363.
Guo, Y., Collins, D., Tarleton, E., Hofmann, F., Tischler, J., Liu, W., Xu, R., Wilkinson, A., and Britton, T. (2015). “Measurements of stress fields near a grain boundary: exploring blocked arrays of dislocations in 3D, Acta Mater. 96, 229236.
Hofmann, F., Song, X., Dolbnya, I., Abbey, B., and Korsunsky, A. M. (2009). “Probing intra-granular deformation by micro-beam Laue diffraction,” Proc. Eng. 1(1), 193196.
Hofmann, F., Song, X., Jun, T. S., Abbey, B., Peel, M., Daniels, J., and Korsunsky, A. M. (2010). “High energy transmission micro-beam Laue synchrotron X-ray diffraction,” Materials Letters. 64(11), 13021305.
Hofmann, F., Abbey, B., Connor, L., Baimpas, N., Song, X., Keegan, S., and Korsunsky, A. M. (2012a). “Imaging of grain-level orientation and strain in thicker metallic polycrystals by high energy transmission micro-beam Laue (HETL) diffraction techniques,” Int. J. Mater. Res. 103(2), 192199.
Hofmann, F., Song, X., Abbey, B., Jun, T. S., and Korsunsky, A. M. (2012b). “High-energy transmission Laue micro-beam X-ray diffraction: a probe for intra-granular lattice orientation and elastic strain in thicker samples,” J. Synchrotron Radiat. 19(3), 307318.
Jackson, A. G. (1991). Handbook of Crystallography: For Electron Microscopists and Others (Springer, New York), pp. 8388.
Kirkham, R., Dunn, P. A., Kuczewski, A. J., Siddons, D. P., Dodanwela, R., Moorhead, G. F., and Pfeffer, M. (2010). “The Maia spectroscopy detector system: engineering for integrated pulse capture, low-latency scanning and real-time processing,” In AIP Conf. Proc. 1234(1), 240––243.
Korsunsky, A. M., Song, X., Hofmann, F., Abbey, B., Xie, M., Connolley, T., and Drakopoulos, M. (2010). “Polycrystal deformation analysis by high energy synchrotron X-ray diffraction on the I12 JEEP beamline at Diamond Light Source,” Mater. Lett. 64(15), 17241727.
Ordavo, I., Ihle, S., Arkadiev, V., Scharf, O., Soltau, H., Bjeoumikhov, A., and Hartmann, R. (2011). “A new pnCCD-based color X-ray camera for fast spatial and energy-resolved measurements. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detectors Assoc. Equip. 654(1), 250257.
Paterson, D., de Jonge, M. D., Howard, D. L., Lewis, W., McKinlay, J., Starritt, A., and Siddons, D. P. (2011). The X-ray fluorescence microscopy beamline at the Australian synchrotron. In AIP Conf. Proc. 1365(1), 219222.
Robach, O., Micha, J. S., Ulrich, O., and Gergaud, P. (2011). “Full local elastic strain tensor from Laue microdiffraction: simultaneous Laue pattern and spot energy measurement,” J. Appl. Crystallogr. 44(4), 688696.
Ryan, C. G. and Jamieson, D. N. (1993). “Dynamic analysis: on-line quantitative PIXE microanalysis and its use in overlap-resolved elemental mapping,” Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 77(1–4), 203214.
Ryan, C. G., Etschmann, B. E., Vogt, S., Maser, J., Harland, C. L., Van Achterbergh, E., and Legnini, D. (2005). “Nuclear microprobe–synchrotron synergy: towards integrated quantitative real-time elemental imaging using PIXE and SXRF,” Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 231(1), 183188.
Ryan, C. G., Siddons, D. P., Kirkham, R., Li, Z. Y., de Jonge, M. D., Paterson, D., and De Geronimo, G. (2013). “The Maia detector array and X-ray fluorescence imaging system: locating rare precious metal phases in complex samples,” SPIE Opt. Eng. Appl. Int. Soc. Opt. Photonics 88510Q88510Q.
Ryan, C. G., Siddons, D. P., Kirkham, R., Li, Z. Y., de Jonge, M. D., Paterson, D. J., and Boesenberg, U. (2014). “Maia detector array and X-ray fluorescence imaging system: locating rare precious metal phases in complex sample,” Proc. SPIE Opt. Eng. Appl. Int. Soc. 8851, 111.
Scharf, O., Ihle, S., Ordavo, I., Arkadiev, V., Bjeoumikhov, A., Bjeoumikhova, S., and Kuhbacher, M. (2011). “Compact pnCCD-based X-ray camera with high spatial and energy resolution: a color X-ray camera,” Anal. Chem. 83(7), 25322538.
Saracchini, R. F., Stolfi, J., Leitão, H. C., Atkinson, G. A., and Smith, M. L. (2012). “A robust multi-scale integration method to obtain the depth from gradient maps,” Comput. Vis. Image Underst. 116(8), 882895.
Smilgies, D. M., Powers, J. A., Bilderback, D. H., and Thorne, R. E. (2012). “Dual-detector X-ray fluorescence imaging of ancient artifacts with surface relief,” J. Synchrotron Radiat. 19(4), 547550.
Tack, P., Garrevoet, J., Bauters, S., Vekemans, B., Laforce, B., Van Ranst, E., and Vincze, L. (2014). “Full-field fluorescence mode micro-XANES imaging using a unique energy dispersive CCD detector,” Anal. Chem. 86(17), 87918797.

Keywords

Type Description Title
PDF
Supplementary materials

Kirkwood et al supplementary material 1
Supplementary Figure

 PDF (358 KB)
358 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed