Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T15:32:21.473Z Has data issue: false hasContentIssue false

Parameter studies for an optimized XRF-determination of Pb in bone

Published online by Cambridge University Press:  01 March 2012

N. Cernohlawek
Affiliation:
Atominstitut, TU-Wien, Stadionallee 2, A-1020 Vienna, Austria
P. Wobrauschek
Affiliation:
Atominstitut, TU-Wien, Stadionallee 2, A-1020 Vienna, Austria
C. Streli
Affiliation:
Atominstitut, TU-Wien, Stadionallee 2, A-1020 Vienna, Austria
N. Zoeger
Affiliation:
Atominstitut, TU-Wien, Stadionallee 2, A-1020 Vienna, Austria

Abstract

One of the main threats to human health from heavy metals is associated with the exposure to lead (Pb). In vivo X-ray fluorescence analysis (XRF) of human bone is a widely used technique to determine the total Pb body burden. The intention of this work was to study the feasibility of in vivo L-shell XRF measurements of Pb in bone using X-ray tubes as excitation sources. Parameter studies using direct tube excitation with various anode materials (Mo and W) and filters as well as different secondary targets and low-Z polarizers were performed with regard to the lowest limits of detection (LLD) achievable for Pb in bone matrix. A breakthrough for the development of a portable spectrometer was achieved by using an air-cooled low-power (50 W) Pd anode X-ray tube, Mo secondary target, and a Peltier-cooled silicon drift detector. LLDs for Pb in bone were determined from measurements on a plaster-of-paris standard without overlying tissue equivalent material and found to be around 0.6 μg∕g.

Type
X-Ray Fluorescence and Related Techniques
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barry, P. S. I. and Mossman, D. B. (1970). Br. J. Ind. Med. BJIMAG 27, 339351.Google Scholar
Berkowitz, G. S., Moline, J. M., and Todd, A. C. (1999). Salud Publica Mex ZZZZZZ 41 (suppl. 2), 8892.CrossRefGoogle Scholar
Currie, L. A. (1968). Anal. Chem. ANCHAM 40, 587.CrossRefGoogle Scholar
Hu, H., Tosteson, T., Aufderheide, A. C., Wittmers, L., Burger, D. E., Milder, F. L., Schidlovsky, G., and Jones, K. W. (1990). “Distribution of Lead in Human Bone: I. Atomic Absorption Measurements,” Advances in In Vivo Composition Studies, edited by Yasumura, S. et al. (Plenum Press, New York), pp. 267274.CrossRefGoogle Scholar
Jones, K., Schidlvski, G., Burger, D. E., Milder, F. L., and Hu, H. (1990). “Distribution of Lead in Human Bone: III. Synchrotron X-ray Microscope Measurements,” Advances in In Vivo Composition Studies, edited by Yasumura, S. et al. (Plenum Press, New York), pp. 281286.CrossRefGoogle Scholar
Rabinowitz, M. B. (1991). Environ. Health Perspect. EVHPAZ 91, 3337.CrossRefGoogle Scholar
Ryon, R. and Zahrt, J. (1993). “Polarized Beam X-ray Fluorescence,” Handbook of X-ray Spectrometry, edited by van Griecken, R. and Markowicz, A. (Marcel Dekker, New York), Vol. 14, pp. 491515.Google Scholar
Schirrmacher, K., Wiemann, M., Bingmann, D., and Buesselberg, D. (1998). Calcif. Tissue Int. CTINDZ 63, 134139.CrossRefGoogle Scholar
Somervaille, L. J., Chettle, D. R., and Scott, M. C. (1985). Phys. Med. Biol. PHMBA7 10.1088/0031-9155/30/9/005 30, 929943.CrossRefGoogle Scholar
Todd, A., Carroll, S., Godbold, J. H., Moshier, E. L., and Kahn, F. A. (2000). Phys. Med. Biol. PHMBA7 10.1088/0031-9155/45/12/316 45, 37373748.CrossRefGoogle Scholar
Todd, A. (2002). Phys. Med. Biol. PHMBA7 10.1088/0031-9155/47/3/310 47, 491505.CrossRefGoogle Scholar
Wasserman, G., Factor-Litvak, P., Liu, X., Todd, A. C., Kline, J. K., Slavkovich, V., Popovac, D., and Graziano, J. H. (2003). Child Neuropsychology 9(1), 2234.CrossRefGoogle Scholar
Wielopolski, L., Rosen, J. F., Slatkin, D. N., Zhang, R., Kalef-Ezra, J. A., Rothman, J. C., Maryanski, M., and Jenks, S. T. (1989). Med. Phys. MPHYA6 10.1118/1.596353 16, 521528.CrossRefGoogle Scholar
Wittmers, L. E., Aufderheide, A. C., Wallgren, J., Rapp, G., and Alich, A. (1988). Arch. Environ. Health AEHLAU 42(6), 381391.CrossRefGoogle Scholar
Zoeger, N., Wobrauschek, P., Streli, C., Pepponi, G., Falkenberg, G., and Osterode, W. (2004). X-Ray Spectrom. XRSPAX 34, 140143.CrossRefGoogle Scholar