Skip to main content Accessibility help

Lattice response of the porous coordination framework Zn(hba) to guest adsorption

  • Josie E. Auckett (a1), A. David Dharma (a2), Marina P. Cagnes (a3), Tamim A. Darwish (a3), Brendan F. Abrahams (a2), Ravichandar Babarao (a4), Timothy A. Hudson (a2), Richard Robson (a2), Keith F. White (a2) and Vanessa K. Peterson (a1)...


Analysis of in situ neutron powder diffraction data collected for the porous framework material Zn(hba) during gas adsorption reveals a two-stage response of the host lattice to increasing CO2 guest concentration, suggesting progressive occupation of multiple CO2 adsorption sites with different binding strengths. The response of the lattice to moderate CH4 guest concentrations is virtually indistinguishable from the response to CO2, demonstrating that the influence of host–guest interactions on the Zn(hba) framework is defined more strongly by the concentration than by the identity of the guests.


Corresponding author

a) Author to whom correspondence should be addressed. Electronic mail:


Hide All
Abrahams, B. F., Dharma, A. D., Donnelly, P. S., Hudson, T. A., Kepert, C. J., Robson, R., Southon, P. D., and White, K. F.Tunable porous coordination polymers for the capture, recovery and storage of inhalation anesthetics,” Chem. Eur. J. 23, 78717875.
Chevreau, H., Liang, W., Kearley, G. J., Duyker, S. G., D'Alessandro, D. M., and Peterson, V. K. (2015). “Concentration-dependent binding of CO2 and CD4 in UiO-66(Zr),” J. Phys. Chem. C 119, 69806987.
Coudert, F.-X., Fuchs, A. H., and Neimark, A. V. (2014). “Comment on Volume shrinkage of a metal-organic framework host induced by the dispersive attraction of guest gas molecules”, PCCP 16, 43944395.
D'Alessandro, D. M., Smit, B., and Long, J. R. (2010). “Carbon dioxide capture: prospects for new materials,” Angew. Chem. Int. Ed. 49, 60586082.
Darwish, T. A., Yepuri, N. R., Holden, P. J., and James, M. (2016). “Quantitative analysis of deuterium using the isotopic effect on quaternary (13)C NMR chemical shifts,” Anal. Chim. Acta 927, 8998.
Hamon, L., Llewellyn, P. L., Devic, T., Ghoufi, A., Clet, G., Guillerm, V., Pirngruber, G. D., Maurin, G., Serre, C., Driver, G., Van Beek, W., Jolimaître, E., Vimont, A., Daturi, M., and Férey, G. (2009). “Co-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53(Cr) MOF,” J. Am. Chem. Soc. 131, 1749017499.
Lee, S., Chevreau, H., Booth, N., Duyker, S. G., Ogilvie, S. H., Imperia, P., and Peterson, V. K. (2016). “Powder sample-positioning system for neutron scattering allowing gas delivery in top-loading cryofurnaces,” J. Appl. Crystallogr. 49, 705711.
Li, J.-R., Kuppler, R. J., and Zhou, H.-C. (2009). “Selective gas adsorption and separation in metal-organic frameworks,” Chem. Soc. Rev. 38, 14771504.
Li, Y. and Yang, R. T. (2007). “Gas adsorption and storage in metal-organic framework MOF-177,” Langmuir 23, 1293712944.
Millward, A. R. and Yaghi, O. M. (2005). “Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature,” J. Am. Chem. Soc. 127, 1799817999.
Momma, K. and Izuma, F. (2008). “VESTA: a three-dimensional visualization system for electronic and structural analysis,” J. Appl. Crystallogr. 41, 653658.
Studer, A. J., Hagen, M. E., and Noakes, T. J. (2006). “Wombat: the high-intensity powder diffractometer at the OPAL reactor,” Physica B 385–86, 10131015.
Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T.-H., and Long, J. R. (2012). “Carbon dioxide capture in metal–organic frameworks,” Chem. Rev. 112, 724781.
Toby, B. H. and Von Dreele, R. B. (2013). “GSAS-II: the genesis of a modern open-source all purpose crystallography software package,” J. Appl. Crystallogr. 46, 544549.
Wang, Y. and Zhao, D. (2017). “Beyond equilibrium: metal–organic frameworks for molecular sieving and kinetic gas separation,” Cryst. Growth Des. 17, 22912308.
White, K. F., Abrahams, B. F., Babarao, R., Dharma, A. D., Hudson, T. A., Maynard-Casely, H. E., and Robson, R. (2015). “A new structural family of gas-sorbing coordination polymers derived from phenolic carboxylic acids,” Chem. Eur. J. 21, 1805718061.
Yang, S., Sun, J., Ramirez-Cuesta, A. J., Callear, S. K., David, W. I. F., Anderson, DP., Newby, R., Blake, A. J., Parker, J. E., Tang, C. C., and Schröder, M. (2012). “Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host,” Nat. Chem. 4, 887894.


Type Description Title
Supplementary materials

Auckett supplementary material
Auckett supplementary material

 PDF (146 KB)
146 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed