Skip to main content Accessibility help

Internal stresses and textures of nanostructured alumina scales growing on polycrystalline Fe3Al alloy

  • Pedro Brito (a1), Haroldo Pinto (a2), Manuela Klaus (a1), Christoph Genzel (a1) and Anke Kaysser-Pyzalla (a1)...


The evolution of internal stresses in oxide scales growing on polycrystalline Fe3Al alloy in atmospheric air at 700 °C was determined using in situ energy-dispersive synchrotron X-ray diffraction. Ex situ texture analyses were performed after 5 h of oxidation at 700 °C. Under these conditions, the oxide-scale thickness, as determined by X-ray photoelectron spectroscopy, lies between 80 and 100 nm. The main phase present in the oxide scales is α-Al2O3, with minor quantities of metastable θ-Al2O3 detected in the first minutes of oxidation, as well as α-Fe2O3. α-Al2O3 grows with a weak (0001) fiber texture in the normal direction. During the initial stages of oxidation the scale develops, increasing levels of compressive stresses which later evolve to a steady state condition situated around −300 MPa.


Corresponding author

Author to whom correspondence should be addressed. Electronic mail:


Hide All
Asteman, H. and Spiegel, M. (2008). “A comparison of the oxidation behaviours of Al2O3 formers and Cr2O3 formers at 700 °C—Oxide solid solutions acting as a template for nucleation,” Corros. Sci. CRRSAA 50, 17341743.10.1016/j.corsci.2007.12.012
Blachère, J. R., Schumann, E., Meier, G. H., and Pettit, F. S. (2003). “Texture of alumina scales on FeCrAl alloys,” Scr. Mater. SCMAF7 49, 909912.10.1016/S1359-6462(03)00403-2
Clarke, D. R. (2002). “Stress generation during high-temperature oxidation of metallic alloys,” Curr. Opin. Solid State Mater. Sci. COSSFX 6, 237244.10.1016/S1359-0286(02)00074-8
Clarke, D. R. (2003). “The lateral growth strain accompanying the formation of thermally grown oxide,” Acta Mater. ACMAFD 51, 13931407.10.1016/S1359-6454(02)00532-3
Eklund, P., Sridharan, M., Sillassen, M., and Bøttiger, J. (2008). “α -Cr2O3 texture template effect on α-Al2O3 thin-film growth,” Thin Solid Films THSFAP 516, 74477450.10.1016/j.tsf.2008.03.038
Eschler, H., Martinez, E. A., and Singheiser, L. (2004). “Residual stresses in alumina scales grown on different types of Fe-Cr-Al alloys: Effect of specimen geometry and cooling rate,” Mater. Sci. Eng., A MSAPE3 384, 111.
Evans, H. E. (1995). “Stress effects in high temperature oxidation of metals,” Int. Mater. Rev. INMREO 40, 140.
Genzel, Ch., Denks, I. A., Gibmeier, J., Klaus, M., and Wagener, G. (2007). “The materials science synchrotron beamline EDDI for energy-dispersive diffraction analysis,” Nucl. Instrum. Methods Phys. Res. A NIMAER 578, 2333.10.1016/j.nima.2007.05.209
Grabke, H. J. (1999). “The oxidation of NiAl and FeAl,” Intermetallics IERME5 7, 11531158.10.1016/S0966-9795(99)00037-0
Hou, P. Y., Paulikas, A. P., Veal, B. W., and Smialek, J. L. (2007). “Thermally grown Al2O3 on H2-annealed Fe3Al alloy: Stress evolution and film adhesion,” Acta Mater. ACMAFD 55, 56015613.10.1016/j.actamat.2007.06.018
Huntz, A. M., Hou, P. Y., and Molins, R. (2007). “Study by deflection of the oxygen pressure influence on the phase transformation in alumina thin films formed by oxidation of Fe3Al,” Mater. Sci. Eng., A MSAPE3 467, 5970.10.1016/j.msea.2007.02.089
Juricic, C., Pinto, H., Cardinali, D., Klaus, M., Genzel, Ch., and Pyzalla, A. R. (2010). “Effect of substrate grain size on the growth, texture and internal stresses of iron oxide scales forming at 450 °C,” Oxid. Met. OXMEAF 73, 1541.10.1007/s11085-009-9162-1
Karadge, M., Zhao, Y., Preuss, M., and Xiao, P. (2006). “Microtexture of thermally grown alumina in commercial thermal barrier coatings,” Scr. Mater. SCMAF7 54, 639644.10.1016/j.scriptamat.2005.10.043
Lee, I. J., Kim, J. -Y., Yu, C., Chang, C. -H., Joo, M. -K., Lee, Y. P., Hur, T. -B., and Kim, H. -K. (2005). “Morphological and structural characterization of epitaxial α-Fe2O3 (0001) deposited on α-Al2O3 (0001) by dc sputter deposition,” J. Vac. Sci. Technol. A JVTAD6 23, 14501455.10.1116/1.2013321
Levin, I. and Brandon, D. (1998). “Metastable alumina polymorphs: Crystal structures and transition sequences,” J. Am. Ceram. Soc. JACTAW 81, 19952012.
Limarga, A. M., Wilkinson, D. S., and Weatherly, G. C. (2004). “Modeling of oxidation-induced growth stresses,” Scr. Mater. SCMAF7 50, 14751479.10.1016/j.scriptamat.2004.03.001
Mennicke, C., Clarke, D. R., and Rühle, M. (2001). “Stress relaxation in thermally grown alumina scales on heating and cooling FeCrAl and FeCrAlY alloys,” Oxid. Met. OXMEAF 55, 551569.10.1023/A:1010316000529
Messaoudi, K., Huntz, A. M., and Di Menza, L. (2000). “Residual stress in alumina scales: Experiments, modeling, and stress-relaxation phenomena,” Oxid. Met. OXMEAF 53, 4975.10.1023/A:1004530729859
Panicaud, B., Grosseau-Poussard, J. L., and Dinhut, J. F. (2006). “On the growth strain origin and stress evolution prediction during oxidation of metals,” Appl. Surf. Sci. ASUSEE 252, 57005713.10.1016/j.apsusc.2005.07.075
Pöter, B., Stein, F., Wirth, R., and Spiegel, M. (2005). “Early Stages of protective oxide layer growth on binary iron aluminides,” Z. Phys. Chem. ZPCFAX 219, 14891503.
Prescott, R. and Graham, M. J. (1992). “The oxidation of iron aluminum alloys,” Oxid. Met. OXMEAF 38, 7387.10.1007/BF00665045
Reddy, A., Hovis, D. B., Heuer, A., Paulikas, A. P., and Veal, B. W. (2007). “In-situ study of oxidation-induced growth strains in a model NiCrAlY bond-coat alloy,” Oxid. Met. OXMEAF 67, 153177.10.1007/s11085-006-9044-8
Renusch, D., Grimsditch, M., Koshelev, I., Veal, B. W., and Hou, P. Y. (1997). “Strain determination in thermally-grown alumina scales using fluorescence spectroscopy,” Oxid. Met. OXMEAF 48, 471495.10.1007/BF02153461
Rhines, F. N. and Wolf, J. S. (1970). “The role of oxide microstructure and growth stresses in the high temperature scaling of nickel,” Metall. Trans. MTGTBF 1, 17011710.10.1007/BF02642020
Rybicki, G. C. and Smialek, J. L. (1989). “Effect of θ-α-Al2O3 transformation on the oxidation behavior of β-NiAl+Zr, ” Oxid. Met. OXMEAF 31, 275304.10.1007/BF00846690
Schumann, E., Sarioglu, C., Blachere, J. R., Pettit, F. S., and Meier, G. H. (2000). “High-temperature stress measurements during the oxidation of NiAl,” Oxid. Met. OXMEAF 53, 259272.10.1023/A:1004585003083
Specht, E. D., Tortorelli, P. F., and Zschack, P. (2004). “In situ measurement of growth stress in alumina scale,” Powder Diffr. PODIE2 19, 6973.10.1154/1.1649318
Sun, J., Stirner, T., and Matthews, A. (2006). “Structure and surface energy of low-index surfaces of stoichiometric α-Al2O3 and α -Cr2O3,” Surf. Coat. Technol. SCTEEJ 201, 42054208.10.1016/j.surfcoat.2006.08.061
Tolpygo, V. K. and Clarke, D. R. (1999). “Alumina scale failure resulting from stress relaxation,” Surf. Coat. Technol. SCTEEJ 120–121, 17.10.1016/S0257-8972(99)00331-X
Veal, B. W. and Paulikas, A. P. (2008). “Growth strains and creep in thermally grown alumina: Oxide growth mechanisms,” J. Appl. Phys. JAPIAU 104, 093525.10.1063/1.3009973
Veal, B. W., Paulikas, A. P., and Hou, P. Y. (2006). “Tensile stress and creep in thermally grown oxide,” Nat. Mater. 5, 349351.10.1038/nmat1626
Wang, C. -M., Thevuthasan, S., Gao, F., McCready, D. E., and Chambers, S. A. (2002). “The characteristics of interface misfit dislocations for epitaxial α-Fe2O3 on α-Al2O3 (0001),” Thin Solid Films THSFAP 414, 3138.10.1016/S0040-6090(02)00452-2
Welzel, U. and Leoni, M. (2002). “Use of polycapillary X-ray lenses in the X-ray diffraction measurement of texture,” J. Appl. Crystallogr. JACGAR 35, 196206.10.1107/S0021889802000481
Wenk, H. R., Mathhies, S., Donovan, J., and Chateigner, D. (1998). “BEARTEX: A Windows based program system for quantitative texture analysis,” J. Appl. Crystallogr. JACGAR 31, 262269.10.1107/S002188989700811X


Related content

Powered by UNSILO

Internal stresses and textures of nanostructured alumina scales growing on polycrystalline Fe3Al alloy

  • Pedro Brito (a1), Haroldo Pinto (a2), Manuela Klaus (a1), Christoph Genzel (a1) and Anke Kaysser-Pyzalla (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.