Skip to main content Accessibility help

In situ high-temperature synchrotron powder diffraction study of the thermal decomposition of cement-asbestos

  • Alessandro F. Gualtieri (a1), Magdalena Lassinantti Gualtieri (a1) and Carlo Meneghini (a2)


Time-resolved synchrotron powder diffraction was used to follow the thermal transformation of cement-asbestos. Thermal transformation of asbestos fibers into nonfibrous crystalline phases is a promising solution for the elimination of these hazardous minerals. Time resolution offered by the use of an imaging plate detector with a high-brightness X-ray source allowed for the observation of metastable phases, commonly not detectable with conventional instrumentation. In addition, the use of a closed capillary as a sample holder mimicked the real, novel industrial reactor where cement-asbestos slates are sealed in a tunnel kiln. The changing gas atmosphere in the closed system was shown to affect the final composition of the recrystallized product. This study demonstrates the importance of advanced powder diffraction techniques in this field of applied research.



Hide All
Babic, B. R. (2006). “The use of cement fibre composites in prolonged wet environments,” in 10th International Inorganic-Bonded Fiber Composites Conference (Curran Associates, São Paulo), pp. 260273.
Boccaccini, D. N., Leonelli, C., Rivasi, M. R., Romagnoli, M., Veronesi, P., Pellacani, G. C., and Boccaccini, A. R. (2007). “Recycling of microwave inertised asbestos containing waste in refractory materials,” J. Eur. Ceram. Soc.JECSER 27, 18551858.
Bonen, D. and Sarkar, S. L. (1995). “The effects of simulated environmental attack on immobilization of heavy metals doped in cement-based materials,” J. Hazard. Mater.JHMAD9 40, 321335.
Bukowski, J. M. and Berger, R. L. (1979). “Reactivity and strength development of CO2 activated non-hydraulic calcium silicates,” Cem. Concr. Res.CCNRAI 9, 5768.
Cattaneo, A., Gualtieri, A. F., and Artioli, G. (2003). “Kinetic study of the dehydroxylation of chrysotile asbestos with temperature by in situ XRPD,” Phys. Chem. Miner.PCMIDU 30, 177183.
Datta, A. K., Samantaray, B. K., and Bhattacherjee, S. (1986). “Thermal transformation in a chrysotile asbestos,” Bull. Mater. Sci.BUMSDW 8, 497503.
De La Torre, A. G., Bruque, S., and Aranda, M. A. G. (2001). “Rietveld quantitative amorphous content analysis,” J. Appl. Crystallogr.JACGAR10.1107/S0021889801002485 34, 196202.
Dias, C. M. R., Cincotto, M. A., Savastano, H. Jr., and John, V. M. (2008). “Long-term aging of fiber-cement corrugated sheets—The effect of carbonation, leaching and acid rain,” Cem. Concr. Compos.CCOCEG 30, 255265.
Doll, R. (1955). “Mortality from lung cancer in asbestos workers,” Br. J. Ind. Med.BJIMAG 12, 8186.
Fernández Bertos, M., Simons, S. J. R., Hills, C. D., and Carey, P. J. (2004). “A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2,” J. Hazard. Mater.JHMAD9 112, 193205.
Grubb, M., Vrolijk, C., and Brack, D. (1999). The Kyoto Protocol: A Guide and Assessment (Royal Institute of International Affairs, London).
Gualtieri, A. F. (2000). “Accuracy of XRPD QPA using the combined Rietveld-RIR method,” J. Appl. Crystallogr.JACGAR 33, 267278.
Gualtieri, A. F. and Tartaglia, A. (2000). “Thermal decomposition of asbestos and recycling in traditional ceramics,” J. Eur. Ceram. Soc.JECSER 20, 14091418.
Gualtieri, A. F. and Zanatto, I. (2007). “Industrial process for the direct temperature induced recrystallization of asbestos and/or mineral fibres containing waste products using a tunnel kiln and recycling,” European Patent No. EP07425495.
Gualtieri, A. F., Cavenati, C., Zanatto, I., Meloni, M., Elmi, G., and Lassinantti Gualtieri, M. (2008a). “The transformation sequence of cement-asbestos slates up to 1200 °C and safe recycling of the reaction product in stoneware tile mixtures,” J. Hazard. Mater.JHMAD9 152, 563570.
Gualtieri, A. F., Lassinantti Gualtieri, M., and Tonelli, M. (2008b). “In situ ESEM study of the thermal decomposition of chrysotile asbestos in view of safe recycling of the transformation product,” J. Hazard. Mater.JHMAD9 156, 260266.
Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., and Hausermann, D. (1996). “Two-dimensional detector software: From real detector to idealised image or two-theta scan,” High Press. Res.HPRSEL10.1080/08957959608201408 14, 235248.
Jolicoeur, C. and Duchesne, D. (1981). “Infrared and thermogravimetric studies of the thermal degradation of chrysotile asbestos fibers: evidence for matrix effects,” Can. J. Chem.CJCHAG 59, 15211526.
Larson, A. C. and Von Dreele, R. B. (2000). General Structure Analysis System (GSAS) (Report No. LAUR 86-748). Los Alamos, New Mexico, Los Alamos National Laboratory.
Leonelli, C., Veronesi, P., Boccaccini, D. N., Rivasi, M. R., Barbieri, L., Andreola, F., Lancellotti, I., Rabitti, D., and Pellacani, G. C. (2006). “Microwave thermal inertisation of asbestos containing waste and its recycling in traditional ceramics,” J. Hazard. Mater.JHMAD9 135, 149155.
Meneghini, C., Artioli, G., Balerna, A., Gualtieri, A. F., Norby, P., and Mobilio, S. (2001). “Multipurpose imaging-plate camera for in situ powder XRD at the GILDA beamline,” J. Synchrotron Radiat.JSYRES10.1107/S090904950100992X 8, 11621166.
Paglietti, F., Zamengo, L., Polizzi, S., Giangrasso, M., and Fasciani, G. (2002). “Trattamento dei percolati delle discariche per RCA: Sperimentazione per una corretta depurazione,” Atti del Congresso L’Industria e l’amianto I nuovi materiali e le nuove tecnologie a dieci anni dalla Legge 257/1992, Rome, 26–28 November 2002, pp. 229249.
Selikoff, I. J., Churg, J., and Hammond, E. C. (1964). “Asbestos exposure and neoplasia,” J. Am. Med. Assoc.JAMAAP 188, 2226.
Swamy, V. and Dubrovinsky, L. S. (1997). “Thermodynamic data for the phases in the CaSiO3 system,” Geochim. Cosmochim. ActaGCACAK10.1016/S0016-7037(96)00403-6 61, 11811191.
Taylor, H. F. W. (1990) Cement Chemistry (Academic, London), p. 475.
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr.JACGAR10.1107/S0021889801002242 34, 210213.
Winburn, R. S., Grier, D. G., McCarthy, G. J., and Peterson, R. B. (2000). “Rietveld quantitative X-ray diffraction analysis of NIST fly ash standard reference materials,” Powder Diffr.PODIE2 15, 163172.


Related content

Powered by UNSILO

In situ high-temperature synchrotron powder diffraction study of the thermal decomposition of cement-asbestos

  • Alessandro F. Gualtieri (a1), Magdalena Lassinantti Gualtieri (a1) and Carlo Meneghini (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.