Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T03:19:57.669Z Has data issue: false hasContentIssue false

High quality powder diffraction data for A-type zeolite with selected divalent d-electron metals

Published online by Cambridge University Press:  06 March 2012

S. Pikus*
Affiliation:
Department of Crystallography, Faculty of Chemistry, Maria Curie Sklodowska University, Maria Curie-Sklodowska Sqr 3, 20-031 Lublin, Poland
E. Olszewska
Affiliation:
Department of Crystallography, Faculty of Chemistry, Maria Curie Sklodowska University, Maria Curie-Sklodowska Sqr 3, 20-031 Lublin, Poland
M. Majdan
Affiliation:
Department of Inorganic Chemistry, Faculty of Chemistry, Maria Curie Sklodowska University, Maria Curie-Sklodowska Sqr 2, 20-031 Lublin, Poland
L. Pajak
Affiliation:
Institute of Physics and Chemistry of Metals, Silesian University, Bankowa str 12, 40-007 Katowice, Poland
*
a)Author to whom correspondence should be addressed; Electronic mail: stanpik@hermes.umcs.lublin.pl

Abstract

Six A-type zeolites: NaA, MnNaA, CoNaA, NiNaA, ZnNaA, CdNaA have been characterized by X-ray powder diffraction. The zeolites with selected divalent cations have been synthesized by a very careful ion-exchange process using very high quality NaA zeolite. Experimental 2θ peak positions, relative peak intensities, values of d and Miller indices as well as a unit cell parameter are reported.

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biskup, B.and Subotic, B. (2000). “Removal of heavy-metal ions from solutions by means of zeolites. II. Thermodynamics of the exchange processes between zinc and lead ions from solutions and sodium ions from zeolite A,” Separation Sci. Technol. ZZZZZZ 35, 23112326.CrossRefGoogle Scholar
Biskup, B.and Subotic, B. (1998). “Removal of heavy metal ions from solutions by means of zeolites. I. Thermodynamics of the exchange processes between cadmium ions from solution and sodium ions from zeolite A,” Semicond. Sci. Technol. SSTEET 33, 449466. sst, SSTEET Google Scholar
Biskup, B.and Subotic, B. (1999). “Kinetics of continuous exchange of Zn2+ ions from solutions with Na+ ions from thin layers of zeolite A,” Stud. Surf. Sci. Catal. SSCTDM 125, 745752. ssd, SSCTDM CrossRefGoogle Scholar
Dyer, A.and Zubair, M. (1998). “Ion-exchange in chabazite,” Microporous Mesoporous Mater. MIMMFJ 22, 135150. a9k, MIMMFJ CrossRefGoogle Scholar
Keane, M. A. (1998). “The removal of copper and nickel from aqueous solution using Y zeolite ion exchangers,” Colloids Surf., A CPEAEH 138, 1120. cpe, CPEAEH CrossRefGoogle Scholar
Kim, J. S.and Keane, M. A. (2000). “Ion exchange of divalent cobalt and iron with Na-Y zeolite: Binary and ternary exchange equilibria,” J. Colloid Interface Sci. JCISA5 232, 126132. jci, JCISA5 CrossRefGoogle ScholarPubMed
Langella, A., Pansini, M., Cappelletti, P., de Gennaro, B., de’ Gennaro, M., and Colella, C. (2000). “NH4+, Cu2+, Zn2+, Cd2+ and Pb2+ exchange for Na+ in a sedimentary clinoptilolite, North Sardinia, Italy,” Microporous Mesoporous Mater. MIMMFJ 37, 337343. a9k, MIMMFJ CrossRefGoogle Scholar
Majdan, M., Pikus, S., Kowalska–Ternes, M., Gładysz–Płaska, M., Staszczuk, P., Fuks, L., and Skrzypek, H. (2003). “Equilibrium study of selected divalent d-electron metals adsorption on A–type zeolite,” J. Colloid Interface Sci. JCISA5 262, 321330. jci, JCISA5 CrossRefGoogle ScholarPubMed
Marczenko, Z., Spektrofotometryczne Oznaczanie Pierwiastków, Państwowe Wydawnictwo Naukowe, Warsaw, 1979.Google Scholar
Mie, M. V., Callejas, R. L., Gehr, R., Cisneros, B. E. J., and Alvarez, P. J. J. (2001). “Heavy metal removal with Mexican clinoptilolite: Multi-component ionic exchange,” Water Res. WATRAG 35, 373378. 96e, WATRAG Google Scholar
Ouki, S. K.and Kavannagh, M. (1999). “Treatment of metals-contaminated wastewaters by use of natural zeolites,” Water Sci. Technol. WSTED4 39, 115122. a4y, WSTED4 CrossRefGoogle Scholar
Sinha, P. K., Panicker, P. K., Amalraj, R. V., and Krishnasamy, V. (1995). “Treatment of radioactive liquid waste containing caesium by indigenously available synthetic zeolites: a comparative study,” Waste Manage. Res. WMARD8 15, 149157. wmr, WMARD8 CrossRefGoogle Scholar
Smith, J. V. (1976). “Origin and structure of zeolites” in Zeolite Chemistry and Catalysis, edited by J. A. Rabo, ACS Monograph 171 (American Chemical Society, Washington), pp. 1–79.Google Scholar
Smith, G. S.and Snyder, R. L. (1979). “FN: Criterion for rating power diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. JACGAR 12, 6065. acr, JACGAR CrossRefGoogle Scholar
Werner, P. E. (1984). “TREOR, trial and error program for indexing of unknown powder patterns,” University of Stockholm, S 106 91, Stockholm, Sweden.Google Scholar
Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. JACGAR 1, 108113. acr, JACGAR CrossRefGoogle Scholar