Skip to main content Accessibility help

Evolution in the structure of akaganeite and hematite during hydrothermal growth: an in situ synchrotron X-ray diffraction analysis

  • Kristina M. Peterson (a1), Peter J. Heaney (a2) and Jeffrey E. Post (a3)


Synchrotron X-ray diffraction was used to monitor the hydrothermal precipitation of akaganeite (β-FeOOH) and its transformation to hematite (Fe2O3) in situ. Akaganeite was the first phase to form and hematite was the final phase in our experiments with temperatures between 150 and 200 °C. Akaganeite was the only phase that formed at 100 °C. Rietveld analyses revealed that the akaganeite unit-cell volume contracted until the onset of dissolution, and subsequently expanded. This reversal at the onset of dissolution was associated with a substantial and rapid increase in occupancy of the Cl site, perhaps by OH or Fe3+. Rietveld analyses supported the incipient formation of an OH-rich, Fe-deficient hematite phase in experiments between 150 and 200 °C. The inferred H concentrations of the first crystals were consistent with “hydrohematite.” With continued crystal growth, the Fe occupancies increased. Contraction in both a- and c-axes signaled the loss of hydroxyl groups and formation of a nearly stoichiometric hematite.


Corresponding author

a)Author to whom correspondence should be addressed. Electronic mail:


Hide All
Ali, I. (2012). “New generation adsorbents for water treatment,” Chem. Rev. 112, 50735091.
Bailey, J. K., Brinker, C. J., and Mecartney, M. L. (1993). “Growth mechanisms of iron oxide particles of differing morphologies from the forced hydrolysis of ferric chloride solutions,” J. Colloid Interface Sci. 157, 113.
Bibi, I., Singh, B., and Silvester, E. (2011). “Akaganéite (β-FeOOH) precipitation in inland acid sulfate soils of south-western New South Wales (NSW), Australia,” Geochim. Cosmochim. Acta 75, 64296438.
Blake, R. L., Hessevick, R. E., Zoltai, T., and Finger, L. W. (1966). “Refinement of the hematite structure,” Am. Mineral. 51, 123129.
Bland, P. A., Kelley, S. P., Berry, F. J., Cadogan, J. M., and Pillinger, C. T. (1997). “Artificial weathering of the ordinary chondrite Allegan: implications for the presence of Cl as a structural component in akaganeite,” Am. Mineral. 82, 11871197..
Bora, D. K., Braun, A., Erni, R., Fortunato, G., Graule, T., and Constable, E. C. (2011). “Hydrothermal treatment of a hematite film leads to highly oriented faceted nanostructures with enhanced photocurrents,” Chem. Mater. 23, 20512061.
Bora, D. K., Braun, A., and Constable, E. C. (2013). “‘In rust we trust.’ Hematite – the prospective inorganic backbone for artificial photosynthesis,” Energy Environ. Sci. 6, 407425.
Boyd, P. W. and Ellwood, M. J. (2010). “The biogeochemical cycle of iron in the ocean,” Nat. Geosci. 3, 675682.
Buchwald, V. F. and Clarke, R. S. J. (1989). “Corrosion of Fe–Ni alloys by Cl-containing akaganéite (beta-FeOOH): the Antarctic meteorite case,” Am. Mineral. 74, 656667.
Burgina, E. B., Kustova, G. N., Isupova, L. A., Tsybulya, S. V., Kryukova, G. N., and Sadykov, V. A. (2000a). “Investigation of the structure of protohematite – metastable phase of ferrum (III) oxide,” J. Mol. Catal. A Chem. 158, 257261.
Burgina, E. B., Kustova, G. N., Tsybulya, S. V., Kryukova, G. N., Litvak, G. S., Isupova, L. A., and Sadykov, V. A. (2000b). “Structure of the metastable modification of iron (III) oxide,” J. Struct. Chem. 41, 396402.
Cai, J., Liu, J., Gao, Z., Navrotsky, A., and Suib, S. L. (2001). “Synthesis and anion exchange of tunnel structure akaganeite,” Chem. Mater. 13, 45954602.
Chambaere, D. G. and De Grave, E. (1984). “A study of the non-stoichiometrical halogen and water content of β-FeOOH,” Phys. Status Solidi A 83, 93102.
Chen, M. L., Shen, L. M., Chen, S., Wang, H., Chen, X. W., and Wang, J. H. (2013) In situ growth of β-FeOOH nanorods on graphene oxide with ultra-high relaxivity for in vivo magnetic resonance imaging and cancer therapy,” J. Mater. Chem. B 1, 25822589.
Cheng, X. L., Jiang, J. S., Jin, C. Y., Lin, C. C., Zeng, Y., and Zhang, Q. H. (2014). “Cauliflower-like α-Fe2O3 microstructures: toluene–water interface-assisted synthesis, characterization, and applications in wastewater treatment and visible-light photocatalysis,” Chem. Eng. J. 236, 139148.
Cornell, R. M. and Schwertmann, U. (2003). The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).
Dang, M. Z., Rancourt, D. G., Dutrizac, J. E., Lamarche, G., and Provencher, R. (1998). “Interplay of surface conditions, particle size, stoichiometry, cell parameters, and magnetism in synthetic hematite-like materials,” Hyperfine Interact. 117, 271319.
Demopoulos, G. P. (2009). “Aqueous precipitation and crystallization for the production of particulate solids with desired properties,” Hydrometallurgy 96, 199214.
Dutcher, B., Fan, M., Leonard, B., Dyar, M. D., Tang, J., Speicher, E. A., Liu, P., and Zhang, Y. (2011). “Use of nanoporous FeOOH as a catalytic support for NaHCO3 decomposition aimed at reduction of energy requirement of Na2CO3/NaHCO3 based CO2 separation technology,” J. Phys. Chem. C 115, 1553215544.
Ellis, J., Giovanoli, R., and Stumm, W. (1976). “Anion-exchange properties of β-FeOOH,” Chimia 30, 194197.
Fonseca, M. C., Bastos, I. N., Baggio-Saitovitch, E., and Sánchez, D. R. (2012). “Characterization of oxides of stainless steel UNS S30400 formed in offshore environment,” Corros. Sci. 55, 3439.
Fütterer, S., Andrusenko, I., Kolb, U., Hofmeister, W., and Langguth, P. (2013). “Structural characterization of iron oxide/hydroxide nanoparticles in nine different parenteral drugs for the treatment of iron deficiency anaemia by electron diffraction (ED) and X-ray powder diffraction (XRPD),” J. Pharm. Biomed. Anal. 86, 151160.
Gao, X. and Schulze, D. G. (2010a). “Chemical and mineralogical characterization of arsenic, lead, chromium, and cadmium in a metal-contaminated Histosol,” Geoderma 156, 278286.
Gao, X. and Schulze, D. G. (2010b). “Precipitation and transformation of secondary Fe oxyhydroxides in a Histosol impacted by runoff from a lead smelter,” Clays Clay Miner. 58, 377387.
García, K. E., Morales, A. L., Arroyave, C. E., Barrero, C. A., and Cook, D. C. (2003). “Mössbauer characterization of rust obtained in an accelerated corrosion test,” Hyperfine Interact. 148, 177183.
Geng, B., Tao, B., Li, X., and Wei, W. (2012). “Ni2+/surfactant-assisted route to porous α-Fe2O3 nanoarchitectures,” Nanoscale 4, 16711676.
Grotzinger, J. P., Sumner, D. Y., Kah, L. C., Stack, K., Gupta, S., Edgar, L., Rubin, D., Lewis, K., Schieber, J., and Mangold, N. (2014). “A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars,” Science 343, 1242777.
Gualtieri, A. F. and Venturelli, P. (1999). “In situ study of the goethite-hematite phase transformation by real time synchrotron powder diffraction,” Am. Mineral. 84, 895904.
Guo, H. and Barnard, A. S. (2013). “Naturally occurring iron oxide nanoparticles: morphology, surface chemistry and environmental stability,” J. Mater. Chem. A 1, 2742.
Hamada, S. and Matijević, E. (1982). “Formation of monodispersed colloidal cubic haematite particles in ethanol + water solutions,” J. Chem. Soc. Faraday Trans. 1 78, 21472156.
Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., and Hausermann, D. (1996). “Two-dimensional detector software: from real detector to idealised image or two-theta scan,” High Press. Res. 14, 235248.
Holm, N. G., Dowler, M. J., Wadsten, T., and Arrhenius, G. (1983). “Β-FeOOH · Cln (akaganéite) and Fe1−xO (wüstite) in hot brine from the Atlantis II Deep (Red Sea) and the uptake of amino acids by synthetic β-FeOOH⋯Cln,” Geochim. Cosmochim. Acta 47, 14651470.
Hou, Y., Wang, D., Yang, X. H., Fang, W. Q., Zhang, B., Wang, H. F., Lu, G. Z., Hu, P., Zhao, H. J., and Yang, H. G. (2013). “Rational screening low-cost counter electrodes for dye-sensitized solar cells,” Nat. Commun. 4, 1583.
Ishikawa, T. and Inouye, K. (1975). “Role of chlorine in β-FeOOH on its thermal change and reactivity to sulfur dioxide,” Bull. Chem. Soc. Jpn. 48, 15801584.
Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N., Cao, J. J., Boyd, P. W., Duce, R. A., and Hunter, K. A. (2005). “Global iron connections between desert dust, ocean biogeochemistry, and climate,” Science 308, 6771.
Kampf, A. R., Mills, S. J., Nestola, F., Ciriotti, M. E., and Kasatkin, A. V. (2013). “Saltonseaite, K3NaMn2+Cl6, the Mn analogue of rinneite from the Salton Sea, California,” Am. Mineral. 98, 231235.
Kandori, K., Tamura, S., and Ishikawa, T. (1994). “Inner structure and properties of diamond-shaped and spherical α-Fe2O3 particles,” Colloid Polym. Sci. 27, 812819.
Keller, P. (1970). “Eigenschaften von (Cl,F,OH)<2Fe8(O,OH)16 und Akaganeite,” Neu. Jb. Mineral. Abh. 113, 2949.
Kou, J. and Varma, R. S. (2013). “Expeditious organic-free assembly: morphologically controlled synthesis of iron oxides using microwaves,” Nanoscale 5, 86758679.
Kuebler, K. E. (2013). “A comparison of the iddingsite alteration products in two terrestrial basalts and the Allan Hills 77005 Martian meteorite using Raman spectroscopy and electron microprobe analyses,” J. Geophys. Res. Planets 118, 803830.
Kumar, E., Bhatnagar, A., Hogland, W., Marques, M., and Sillanpää, M. (2014). “Interaction of inorganic anions with iron-mineral adsorbents in aqueous media – a review,” Adv. Colloid Interface Sci. 203, 1121.
Lammers, K., Murphy, R., Riendeau, A., Smirnov, A., Schoonen, M. A. A., and Strongin, D. R. (2011). “CO2 sequestration through mineral carbonation of iron oxyhydroxides,” Environ. Sci. Technol. 45, 1042210428.
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Report LAUR 86-748). Los Alamos, New Mexico: Los Alamos National Laboratory.
Li, X., Yu, X., He, J., and Xu, Z. (2009). “Controllable fabrication, growth mechanisms, and photocatalytic properties of hematite hollow spindles,” J. Phys. Chem. C 113, 28372845.
Ma, J., Zhang, X., Chen, K., Li, G., and Han, X. (2013). “Morphology-controlled synthesis of hematite hierarchical structures and their lithium storage performances,” J. Mater. Chem. A 1, 55455553.
Mackay, A. L. (1960). “β-ferric oxyhydroxide,” Mineral. Mag. 32, 545557.
Mackay, A. L. (1962). “β-ferric oxyhydroxide – akaganeite,” Mineral. Mag. 33, 270280.
Masa, B., Pulisova, P., Bezdicka, P., Michalkova, E., and Subrt, J. (2012). “Ochre precipitates and acid mine drainage in a mine environment,” Ceram. Silik. 56, 914.
Matijević, E. and Scheiner, P. (1978). “Ferric hydrous oxide sols: III. Preparation of uniform particles by hydrolysis of Fe (III)-chloride, -nitrate, and -perchlorate solutions,” J. Colloid Interface Sci. 63, 509524.
McLennan, S. M., Anderson, R. B., Bell, J. F., Bridges, J. C., Calef, F., Campbell, J. L., Clark, B. C., Clegg, S., Conrad, P., and Cousin, A. (2014). “Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale Crater, Mars,” Science 343, 1244734.
Ming, D. W., Archer, P. D., Glavin, D. P., Eigenbrode, J. L., Franz, H. B., Sutter, B., Brunner, A. E., Stern, J. C., Freissinet, C., and McAdam, A. C. (2014). “Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars,” Science 343, 1245267.
Peterson, K. M., Heaney, P. H., Post, J. E., and Eng, P. J. (2015). “A refined monoclinic structure for a high-temperature ‘hydrohematite’,” Am. Mineral. 100, 570579.
Peterson, K. M., Heaney, P. H., and Post, J. E. (2016). “A kinetic analysis of the transformation from akaganeite to hematite: an in situ time-resolved X-ray diffraction study,” Chem. Geol. 444, 2736.
Post, J. E. and Buchwald, V. F. (1991). “Crystal structure refinement of akaganeite,” Am. Mineral. 76, 272277.
Post, J. E., Heaney, P. J., Von Dreele, R. B., and Hanson, J. C. (2003a). “Neutron and temperature-resolved synchrotron X-ray powder diffraction study of akaganeite,” Am. Mineral. 88, 782788.
Post, J. E., Heaney, P. J., and Hanson, J. (2003b). “Synchrotron X-ray diffraction study of the structure and dehydration behavior of todorokite,” Am. Mineral. 88, 142150.
Rao, X., Su, X., Yang, C., Wang, J., Zhen, X., and Ling, D. (2013). “From spindle-like β-FeOOH nanoparticles to α-Fe2O3 polyhedral crystals: shape evolution, growth mechanism and gas sensing property,” CrystEngComm 15, 72507256.
Reddy, M. V., Subba Rao, G. V., and Chowdari, B. V. R. (2013). “Metal oxides and oxysalts as anode materials for Li ion batteries,” Chem. Rev. 113, 53645457.
Refait, P., Ouahman, R., Forrières, C., and Génin, J. M. R. (1992). “The role of Cl ions in the oxidation of iron artifacts from chlorinated archeological environments,” Hyperfine Interact. 70, 9971000.
Reguer, S., Dillmann, P., and Mirambet, F. (2007). “Buried iron archaeological artefacts: corrosion mechanisms related to the presence of Cl-containing phases,” Corros. Sci. 49, 27262744.
Tabuchi, T., Katayama, Y., Nukuda, T., and Ogumi, Z. (2009a). “β-FeOOH thin film as positive electrode for lithium-ion cells,” J. Power Sources 191, 640643.
Tabuchi, T., Katayama, Y., Nukuda, T., and Ogumi, Z. (2009b). “Surface reaction of β-FeOOH film negative electrode for lithium-ion cells,” J. Power Sources 191, 636639.
Tartaj, P., Morales, M. P., Gonzalez-Carreño, T., Veintemillas-Verdaguer, S., and Serna, C. J. (2011). “The iron oxides strike back: from biomedical applications to energy storage devices and photoelectrochemical water splitting,” Adv. Mater. 23, 52435249.
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr. 20, 7983.
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 14.
Vaniman, D. T., Bish, D. L., Ming, D. W., Bristow, T. F., Morris, R. V., Blake, D. F., Chipera, S. J., Morrison, S. M., Treiman, A. H., Rampe, E. B., Rice, M., Achilles, C. N., Grotzinger, J. P., McLennan, S. M., Williams, J., Bell, J. F., Newsom, H. E., Downs, R. T., Maurice, S., Sarrazin, P., Yen, A. S., Morookian, J. M., Farmer, J. D., Stack, K., Milliken, R. E., Ehlmann, B. L., Sumner, D. Y., Berger, G., Crisp, J. A., Hurowitz, J. A., Anderson, R., Des Marais, D. J., Stolper, E. M., Edgett, K. S., Gupta, S., and Spanovich, N., MSL Science Team (2014). “Mineralogy of a mudstone at Yellowknife Bay, Gale Crater, Mars,” Science 343, 1243480.
Wang, B., Chen, J. S., and Lou, X. W. D. (2012). “The comparative lithium storage properties of urchin-like hematite spheres: hollow vs. solid,” J. Mater. Chem. 22, 94669468.
Wang, D., Song, C., Zhao, Y., and Yang, M. (2008). “Synthesis and characterization of monodisperse iron oxides microspheres,” J. Phys. Chem. C 112, 1271012715.
Weiser, H. B. and Milligan, W. O. (1935). “X-ray studies on the hydrous oxides. V. Beta ferric oxide monohydrate,” J. Am. Chem. Soc. 57, 238241.
Wheeler, D. A., Wang, G., Ling, Y., Li, Y., and Zhang, J. Z. (2012). “Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties,” Energy Environ. Sci. 5, 66826702.
Willard, M. A., Kurihara, L. K., Carpenter, E. E., Calvin, S., and Harris, V. G. (2004). “Chemically prepared magnetic nanoparticles,” Int. Mater. Rev. 49, 125170.
Wolska, E. (1981). “The structure of hydrohematite,” Z. Kristallogr. 154, 6975.
Wolska, E. and Schwertmann, U. (1989). “Nonstoichiometric structures during dehydroxylation of goethite,” Z. Kristallogr. 189, 223237.
Yang, S., Xu, Y., Sun, Y., Zhang, G., and Gao, D. (2012). “Size-controlled synthesis, magnetic property, and photocatalytic property of uniform α-Fe2O3 nanoparticles via a facile additive-free hydrothermal route,” CrystEngComm 14, 79157921.


Evolution in the structure of akaganeite and hematite during hydrothermal growth: an in situ synchrotron X-ray diffraction analysis

  • Kristina M. Peterson (a1), Peter J. Heaney (a2) and Jeffrey E. Post (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed