Skip to main content Accessibility help
×
Home

Equal channel angular pressing processing routes and associated structure modification: a differential scanning calorimetry and X-ray line profile analysis

  • A. Sarkar (a1), Satyam Suwas (a1), D. Goran (a2), J.-J. Fundenberger (a2), L.S. Toth (a2) and T. Grosdidier (a2)...

Abstract

The effectiveness of different routes of equal channel angular pressing (A, Bc, and C) is studied for commercially pure copper. The stored energy and the activation energy of recrystallization for the deformed samples were quantified using differential scanning calorimetry and X-ray diffraction line profile analysis. Results of the study revealed that the dislocation density and the stored energy are higher in the case of route Bc deformed sample. The activation energy for recrystallization is lower for route Bc.

Copyright

Corresponding author

a)Author to whom correspondence should be addressed. Electronic mail: apusarkar@gmail.com

References

Hide All
Alexandrov, I. V., Islamgaliev, R. K., Valiev, R. Z., Zhu, Y. T., and LoweI, T. C. (1998). “Microstructures and properties of nanocomposites obtained through SPTS consolidation of powders,” Metall. Mater. Trans. A29, 22532260.
Borbely, A., Dragomir, I., Ribarik, G., and Ungar, T. (2003). “Computer program ANIZC for the calculation of diffraction contrast factors of dislocations in elastically anisotropic cubic, hexagonal and trigonal crystals,” J. Appl. Cryst. 36, 160162.
Cao, W. Q., Gu, C. F., Pereloma, E. V., and Davies, C. H. J. (2008). “Stored energy, vacancies and thermal stability of ultrafine grained copper,” Mater. Sci. Eng. A492, 7479.
Dobatkin, S. V., Kopylov, V. I., Pippan, R., and Vasil'eva, O. V. (2004). “Formation of high-angle grain boundaries in iron upon cold deformation by equal-channel angular pressing,” Mater. Sci. Forum 467–470, 12771282.
Dobatkin, S. V., Szpunar, J. A., Zhilyaev, A. P., Cho, J.-Y., and Kuznetsov, A. A. (2007). “Effect of the route and strain of equal-channel angular pressing on structure and properties of oxygen-free copper,” Mater. Sci. Eng. A462, 132138.
Ferrasse, S., Hartwig, K. T., Goforth, R. E., and Segal, V. M. (1997). “Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion,” Metall. Mater. Trans. A28, 10471057.
Grosdidier, T., Goran, D., Ji, G. and Llorca, N. (2010). “On the processing of hetero-nanostructured metals for improved strength/ductility balance by ECAE and SPS techniques,” J. Alloys Compd 504, S456S459.
Grosdidier, T. and Llorca, N. (2010). “Processing dense hetero-nanostructured metallic materials for Improved strength/ductility balance through high strain deformation and electrical current assisted sintering (ECAS),” Mater. Sci. Forum 633–634, 559567.
Gubicza, J., Balogh, L., Hellmig, R. J., Estrin, Y., and Ungar, T. (2005). “Dislocation structure and crystallite size in severely deformed copper by X-ray peak profile analysis,” Mater. Sci. Eng. A400–401, 334338.
Gubicza, J., Kassem, M., Ribárik, G., and Ungár, T. (2004). “The microstructure of mechanically alloyed Al–Mg determined by X-ray diffraction peak profile analysis,” Mater. Sci. Eng. A372, 115122.
Gubicza, J., Ribárik, G., Goren-Muginstein, G. R., Rosen, A. R., and Ungar, T. (2001). “The density and the character of dislocations in cubic and hexagonal polycrystals determined by X-ray diffraction,” Mater. Sci. Eng. A309–310, 6063.
Kissinger, H. E. (1957). “Reaction kinetics in differential thermal analysis,” Anal. Chem. 29, 17021706.
Langdon, T. G., Furukawa, M., Nemoto, M., and Horita, Z. (2000). “Using equal-channel angular pressing for refining grain size,” JOM 52(4), 3033.
Li, S., Gazder, A. A., Beyerlein, I. J., Pereloma, E. V., and Davies, C. H. J. (2006). “Effect of processing route on microstructure and texture development in equal channel angular extrusion of interstitial-free steel,” Acta Mater. 54, 10871100.
Ma, E. (2003). “Instabilities and ductility of nanocrystalline and ultrafine-grained metals,” Scr. Mater. 49, 663668.
Mathieu, J. P., Suwas, S., Eberhardt, A., Tóth, L. S., and Moll, P. (2006). “A new design for equal channel angular extrusion,” J. Mater. Process. Technol. 173, 2933.
Oh-Ishi, K., Horita, Z., Furukawa, M., Nemoto, M., and Langdon, T. G. (1998). “Optimizing the rotation conditions for grain refinement in equal-channel angular pressing,” Metall. Mater. Trans. A29, 20112013.
Ribárik, G., Ungár, T., and Gubicza, J. (2001). “MWP-fit: a program for multiple whole-profile fitting of diffraction peak profiles by ab initio theoretical functions,” J. Appl. Cryst. 34, 669676.
Schafler, E., Steiner, G., Korznikova, E., Kerber, M., and Zehetbauer, M. J. (2005). “Lattice defect investigation of ECAP-Cu by means of X-ray line profile analysis, calorimetry and electrical resistometry,” Mater. Sci. Eng. A410–411, 169173.
Segal, V. M. (1995). “Materials processing by simple shear,” Mater. Sci. Eng. A 197, 157164.
Skrotzki, W., Scheerbaum, N., Oertel, C.-G., Arruffat-Massion, R., Suwas, S., and Tóth, L. S. (2007). “Microstructure and texture gradient in copper deformed by equal channel angular pressing,” Acta Mater. 55, 20132024.
Stolyarov, V. V., Zhu, Y. T., Alexandrov, I. V., Lowe, T. C., and Valiev, R. Z. (2001). “Influence of ECAP routes on the microstructure and properties of pure Ti,” Mater. Sci. Eng. A299, 5967.
Stolyarov, V. V., Zhu, Y. T., Lowe, T. C., and Valiev, R. Z. (1999). “A two step SPD processing of ultrafine-grained titanium,” NanoStruct. Mater. 11, 947954.
Stüwe, H. P. (2003). “Equivalent strains in severe plastic deformation,” Adv. Eng. Mater. 5, 291295.
Suwas, S. and Kim, D.-I. (2007). “Annealing texture of ECAE processed copper,” Mater. Sci. Forum, 558–559, 13531358.
Suwas, S., Arruffat Massion, R., Tóth, L. S., Fundenberger, J.-J., and Beausir, B. (2009). “Evolution of texture during equal channel angular extrusion of commercially pure aluminum: Experiments and simulations,” Mater. Sci. Eng. A520, 134146.
Suwas, S., Arruffat Massion, R., Tóth, L. S., Fundenburger, J. J., Eberhardt, A., and Skrotzki, W. (2006). “Evolution of crystallographic texture during equal channel angular extrusion of copper: the role of material variables,” Metall. Mater. Trans. 37A, 739753.
Suwas, S., Eberhardt, A., Tóth, L. S., Fundenberger, J. J., and Grosdidier, T. (2004). “A recrystallisation based investigation for efficiency of processing routes during equal channel angular extrusion,” Mater. Sci. Forum, 467–470, 13251332.
Suwas, S., Tóth, L. S., Fundenberger, J.-J., and Eberhardt, A. (2005). “Texture evolution in commercially pure Al during equal channel angular extrusion (ECAE) as a function of processing routes,” Solid State Phenom., 105, 357362.
Ungar, T. (2004). “Microstructural parameters from X-ray diffraction peak broadening,” Scr. Mater. 51, 777781.
Ungar, T. and Borbely, A. (1996). “The effect of dislocation contrast on X-ray line broadening: a new approach to line profile analysis,” Appl. Phys. Lett. 69, 31733175.
Ungar, T. and Tichy, G. (1999). “The effect of dislocation contrast on X-ray line profiles in untextured polycrystals,” Phys. Status Solidi a 171, 425434.
Ungar, T., Dragomir, I., Revesz, A., and Borbely, A. (1999). “The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice,” J. Appl. Cryst. 32, 9921002.
Wang, Y. M. and Ma, E. (2004). “Three strategies to achieve uniform tensile deformation in a nanostructured metal,” Acta Mater. 52, 16991709.
Wang, Y. M., Chen, M. W., Zhou, F. H., and Ma, E. (2002). “High tensile ductility in a nanostructured metal,” Nature 419, 912915.
Wilkens, M. (1970a). “Fundamental aspects of dislocation theory,” in NBS spl pub, II:317, edited by Simmons, J. A., de Wit, R., and Bullougs, R. (US Department of Commerce, Washington, DC), p. 1195.
Wilkens, M. (1970b). “The determination of density and distribution of dislocations in deformed single crystals from broadened X-ray diffraction profiles,” Phys. Status Solidi 2, 359363.
Williamson, G. K. and Hall, W. H. (1952). “X-ray line broadening from filed aluminium and wolfram,” Acta Metal. 1, 2231.
Valiev, R. Z. (1997). “Structure and mechanical properties of ultrafine-grained metals,” Mater. Sci. Eng. A 234–236, 5966.
Valiev, R. Z., Islamgaliev, R. K., and Alexandrov, I. V. (2000). “Bulk nanostructured materials from severe plastic deformation,” Prog. Mater. Sci. 45, 103189.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed