Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-25T19:22:35.018Z Has data issue: false hasContentIssue false

The electronic age: energy-dispersive X-ray analysis and other modern techniques to the present and beyond

Published online by Cambridge University Press:  15 May 2014

Michael Mantler*
Affiliation:
Rigaku Corporation, Tokyo, Japan
*
a)Author to whom correspondence should be addressed. Electronic mail: michael.mantler@rigaku.com

Abstract

This paper summarizes an oral presentation of the same title presented at the occasion of recognizing the “The 100th Anniversary of X-ray Spectroscopy” at DXC 2013. It gives an overview of the development in electronics with focus on (mainly) energy-dispersive X-ray detectors and related data processing. Naturally this has its origin in the early transistors and the first semiconductor junction detectors of the late 1940s. It was followed by refinement of semiconductor detector technology in general and particularly by the invention of Li-drifting and employment of low-noise field effect transistors until such devices matured sufficiently to be marketed by the late 1960s. Further improvement followed in resolution, speed, operability at room temperature, and development of junction arrays with imaging capabilities. An important aspect is the development of related software requiring affordable laboratory computers, programming languages, and databases of fundamental parameters. Today x-ray fluorescence analysis (and not only the energy-dispersive variant) is widely employed as an analytical tool for the traditional technical and industrial applications but notably also, at an expanding rate as well as variety, in other fields including environmental, medical, archaeological, space, arts, and many more.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, D. W. (1968). “Recent advances in X-ray detection technology,” IEEE Trans. Nucl. Sci. 15(3), 1046.CrossRefGoogle Scholar
Bambynek, W., Crasemann, B., Fink, R. W., Freund, H.-U., Mark, H., Swift, C. D., Price, R. E., and Venugopala Rao, P. (1972). “X-Ray fluorescence yields, Auger, and Coster–Kronig transition probabilities,” Rev. Mod. Phys. 44(4), 739811.CrossRefGoogle Scholar
Barkla, C. G. (1905a). “Energy of secondary Röntgen radiation,” Proc. Phys. Soc. Lond. 19, 185204.CrossRefGoogle Scholar
Barkla, C. G. (1905b). “Secondary Röntgen radiation,” Nature 1945(71), 440 (LTE).CrossRefGoogle Scholar
Barkla, C. G. (1906a). “Secondary Röntgen radiation,” Proc. Phys. Soc. Lond. 20, 200218.CrossRefGoogle Scholar
Barkla, C. G. (1906b). “Secondary Rontgen rays and atomic weight,” Nature 1894(73), 365 (LTE).CrossRefGoogle Scholar
Barkla, C. G. (1906c). “Absorption of X-rays,” Nature 2020(78), 245 (LTE).Google Scholar
Barkla, C. G. (1909). “Absorption of X-rays,” Nature 2054(80), 37 (LTE).CrossRefGoogle Scholar
Barkla, C. G. (1912). “Interference of Röntgen radiation (preliminary account),” Proc. Phys. Soc. Lond. 25, 206215.CrossRefGoogle Scholar
Bearden, J. A. and Burr, A. F. (1967). “Reevaluation of X-ray atomic energy levels,” Rev. Mod. Phys. 39, 125142.CrossRefGoogle Scholar
Beattie, H. J. and Brissey, R. M. (1954). “Calibration method for X-ray fluorescence spectrometry,” Anal. Chem. 26, 980983.CrossRefGoogle Scholar
Birks, L. S. and Batt, A. P. (1963). “Use of a multichannel analyzer for electron probe microanalysis,” Anal. Chem. 35(7), 778782.CrossRefGoogle Scholar
Birks, L. S., Labrie, R. J., and Criss, J. W. (1966). “Energy dispersion for quantitative X-ray spectrochemical analysis,” Anal. Chem. 38(6), 701707.CrossRefGoogle Scholar
Bohr, N. H. (1913). “On the constitution of atoms and molecules,” Phil. Mag. 26(151), 125; (153), 476–502; (155), 857–875 [frequently referred to as “The Trilogy”].CrossRefGoogle Scholar
Bowman, H. R., Hyde, E. K., Thomson, S. G., and Jared, R. C. (1966). “Application of high-resolution semiconductor detectors in X-ray emission spectrography,” Science 151, 562568.CrossRefGoogle ScholarPubMed
Criss, J. W., Birks, L. S., and Gilfrich, J. V. (1978). “Versatile X-ray analysis program combining fundamental parameters and empirical coefficients,” Anal. Chem. 50(1), 3337.CrossRefGoogle Scholar
Cullen, D. E., Hubbell, J. H., Kissell, L. (1997). “EPDL97: the Evaluated Photon Data Library, ‘97 Version,” Lawrence Livermore National Laboratory, UCRL-50400, Vol. 6, Rev. 5, September 1997.Google Scholar
Dearnaley, G. (1966). “Nuclear radiation detection by solid state devices,” J. Sci. Instrum. 43, 869877.CrossRefGoogle Scholar
Doi, M., Kawahara, N., Hara, S., and Mantler, M. (2013). “Experimental Study on the Energy Dependence of Photoionzation Cross Section Ratios in Subshells Using an EDX Spectrometer,” Denver X-ray Conf. 2013, Poster F74; submitted to Advances in X-Ray Analysis 57.Google Scholar
Donovan, P. F. (1966). “Application of detectors in low energy nuclear physics,” IEEE Trans. Nucl. Sci. 13, 2133.CrossRefGoogle Scholar
Fitzgerald, R., Keil, K., and Heinrich, K. F. (1968). “Solid-state energy-dispersion spectrometer for electron-microprobe X-ray analysis,” Science 159, 528530.CrossRefGoogle ScholarPubMed
Frankel, R. S. and Aitken, D. W. (1970). “Energy-dispersive X-ray emission spectroscopy,” Appl. Spectrosc. 24(6), 557566.CrossRefGoogle Scholar
Gatti, E. and Rehak, P. (1984). “Semiconductor drift chamber – an application of a novel charge transport scheme,” Nucl. Instrum. Methods Phys. Res. A 225, 608614.CrossRefGoogle Scholar
Gillam, E. and Heal, H. T. (1953). “Some problems in the analysis of steels by X-ray fluorescence,” Br. J. Appl. Phys. 3, 353358.CrossRefGoogle Scholar
Gilfrich, J. V. and Birks, L. S. (1968). “Spectral distribution of X-ray tubes for quantitative X-ray fluorescence analysis,” Anal. Chem. 40(7), 10771080.CrossRefGoogle Scholar
Glocker, R. and Schreiber, H. (1928). “Quantitative Röntgenspektralanalyse mit Kalterregung des Spektrums,” Ann. Phys. 85, 10871102, with reference to Glocker, R. (1918). Phys. Z. 10, 66.Google Scholar
Grodzins, L. (2012). “Handheld XRF Spectrometers – The Niton Story,” Waters Symposium, Pittcon 2012, Orlando.Google Scholar
Hofstadter, R. (1950). “Crystal counters,” Proceedings of the IRE (Aust) 38, 726740.CrossRefGoogle Scholar
Hönicke, P. P., Beckhoff, B., Müller, M., Kolbe, N., Krämer, M., and Mantler, M. (2012). “Experimental verification of L-shell photoionization cross sections of Pd and Mo,” EXRS 2012, Vienna, Austria.Google Scholar
IEEE Global History Network (2012). “A very early conception of a solid state device,” [http://www.ieeeghn.org/wiki/index.php/A] Very Early Conception of a Solid State Device]; referring to J. Lilienfelds early ideas about (field effect) transistors and patents (1925, 1926, 1928).Google Scholar
Jentschke, W. (1948). “The crystal counter,” Phys. Rev. Lett. 73, 7778 (LTE).Google Scholar
Kemp, J. W. and Andermann, G. (1956). “Pittsburgh conference on analytical chemistry and applied spectroscopy 1955,” Spectrochim. Acta 8, 114A.Google Scholar
Kemp, J. W., Hasler, M. F., Jones, J. L., and Zeitz, L. (1955). “Multichannel instruments for fluorescent X-ray spectroscopy,” Spectrochim. Acta 7(C) 141142, E7–E8, 143–144, E9–E10, 145–148.CrossRefGoogle Scholar
Lechner, P., Fiorini, C., Longoni, A., Lutz, G., Pahlke, A., Soltau, H., and Strüder, L. (2004). “Silicon drift detectors for high resolution, high count rate X-ray spectroscopy at room temperature,” Adv. X-Ray Anal. 47, 5358.Google Scholar
Lüscher, E. (1955). “Anwendung des Röntgenstrahlen quantometers in der analyse,” Mikrochim. Acta 43(2–3), 696702.CrossRefGoogle Scholar
McKay, K. G. (1949). “A germanium counter,” Phys. Rev. 76, 1537 (LTE).CrossRefGoogle Scholar
McMaster, W. H., Kerr Del Grande, N., Mallett, J. H., and Hubbell, J. H. (1969). “Compilation of X-Ray Cross Sections,” Lawrence Livermore National Laboratory Report UCRL-50174 Section II Revision I. Available from National Technical Information Services L-3, U.S. Department of Commerce.Google Scholar
Moseley, H. G. J. (1913). “The high frequency spectra of the elements,” Phil. Mag. 26(156), 10241034.CrossRefGoogle Scholar
Pahlke, A. (2013). “Kevex Silicon Drift Detectors with ASIC and Readout Electronics,” Denver X-ray Conf. 2013, Poster C4.Google Scholar
Pantazis, T., Pantazis, J., Huber, A., and Redus, R. (2010). “The historical development of the thermoelectrically cooled X-ray detector and its impact on the portable and hand-held XRF industries (February 2009),” X-ray Spectrom. 39, 9097.CrossRefGoogle Scholar
Pell, E. M. (1959). “Ion drift in an n-p junctionAppl. Phys. 31, 291302.CrossRefGoogle Scholar
Pfann, W. G. (1950). “Significance of composition of contact point in rectifying junctions on germanium,” Phys. Rev. 81, 882–882.CrossRefGoogle Scholar
Röntgen, W. C. (1895). “Ueber eine neue Art von Strahlen,” Aus den Sitzungsberichten der Würzburger Physik.-medic. Gesellschaft 1895, 312.Google Scholar
Ryon, R. W. (2001). “The transistor and energy-dispersive x-ray spectrometry: roots and milestones in X-ray analysis,” X-Ray Spectrom. 30, 361372.CrossRefGoogle Scholar
Send, S., Abboud, A., Hartmann, R., Huth, M., Leitenberger, W., Pashniak, N., Schmidt, J., Strüder, L., and Pietsch, U. (2013). “Characterization of a pnCCD for applications with synchrotron radiation,” Nucl. Instrum. Methods Phys. Res. A 711, 132141.CrossRefGoogle Scholar
Sherman, J. (1955). “The theoretical derivation of fluorescent X-ray intensities from mixtures,” Spectrochim. Acta 7, 283306.CrossRefGoogle Scholar
Sherman, J. (1957). “A Theoretical Derivation of the Composition of Mixable Specimens From Fluorescent X-ray Intensities,” Advances in X-ray Analysis 1, 231-250. Available on CD-ROM from International Centre of Diffraction Data, Newtown Square, PA, USA.Google Scholar
Shiraiwa, T. and Fujino, N. (1966). “Theoretical calculation of fluorescent X-Ray intensities in fluorescent X-ray spectrochemical analysis,” Japan. J. Appl. Phys. 5, 886899.CrossRefGoogle Scholar
van Heerden, P. J. (1945). “The Crystal Counter,” Thesis, Utrecht, The Netherlands.Google Scholar
von Laue, M. T. (1913). “Röntgenstrahlinterferenzen,” Phys. Z. 14(22/23), 10751079.Google Scholar
Wooldridge, D. E., Ahearn, A. J., and Burton, J. (1947). “Conductivity pulses induced in diamond by alpha-particles,” Phys. Rev. 71(12), 913–913.CrossRefGoogle Scholar