Skip to main content Accessibility help
×
Home

Development of an in situ X-ray diffraction system for hydrothermal reactions and its application to autoclaved aerated concrete formation

  • J. Kikuma (a1), M. Tsunashima (a1), T. Ishikawa (a1), S. Matsuno (a1), A. Ogawa (a2) and K. Matsui (a2)...

Abstract

An in situ time-resolved XRD system for hydrothermal reaction has been developed in order to investigate the phase evolution during autoclave process in autoclaved aerated concrete (AAC) formation. The system includes a novel autoclave cell for transmission XRD with thin beryllium windows, a two-dimensional photon-counting pixel array detector, and uses high energy X-rays from a synchrotron radiation source. The temperature and pressure inside the cell are extremely stable during hydrothermal reaction over the course of several hours. The system was utilized for the formation reaction of AAC. Phase evolution was clearly observed, including several intermediate phases, and detailed information on the structural changes during the hydrothermal reaction were obtained.

Copyright

Corresponding author

a)Author to whom correspondence should be addressed. Electronic mail: kikuma.jb@om.asahi-kasei.co.jp

References

Hide All
Christensen, A. N., Jensen, T. R., and Hanson, J. C. (2004). “Formation of ettringite, Ca6Al2(SO4)3(OH)12-26H2O, AFt, and monosulfate, Ca4Al2O6(SO4)-14H2O, AFm-14, in hydrothermal hydration of portland cement and of calcium aluminum oxide-calcium sulfate dihydrate mixtures studied by in-situ synchrotron x-ray powder diffraction,” J. Solid State Chem. JSSCBI 177, 19441951. 10.1016/j.jssc.2003.12.030
Kikuma, J., Tsunashima, M., Ishikawa, T., Matsuno, S., Ogawa, A., Matsui, K., and Sato, M. (2009). “Hydrothermal formation of tobermorite studied by in-situ X-ray diffraction under autoclave condition,” J. Synchrotron Radiat. JSYRES 16, 683686. 10.1107/S0909049509022080
Kikuma, J., Tsunashima, M., Ishikawa, T., Matsuno, S., Ogawa, A., Matsui, K., and Sato, M. (2010). “In-situ X-ray diffraction under hydrothermal condition using synchrotron radiation and its application to tobermorite formation reaction,” Bunseki Kagaku BNSKAK 59, 287292. 10.2116/bunsekikagaku.59.287
Meller, N., Hall, C., Kyritsis, K., and Giriat, G. (2007). “Synthesis of cement based CaO–Al2O3–SiO2–H2O (CASH) hydroceramics at 200 and 250°C: Ex-situ and in-situ diffraction,” Cement Concr. Res. 37, 823833. 10.1016/j.cemconres.2007.03.006
Norby, P. (2006). “In-situ XRD as a tool to understanding zeolite crystallization,” Curr. Opin. Colloid Interface Sci. COCSFL 11, 118125. 10.1016/j.cocis.2005.11.003
Sakiyama, M., Oshio, Y., and Mitsuda, T. (2000). “Influence of gypsum on the hydrothermal reaction of lime-quartz system and on the strength of autoclaved calcium silicate product,” J. Soc. Inorg. Mater. Jpn. JSIJFR 7, 685691.

Keywords

Development of an in situ X-ray diffraction system for hydrothermal reactions and its application to autoclaved aerated concrete formation

  • J. Kikuma (a1), M. Tsunashima (a1), T. Ishikawa (a1), S. Matsuno (a1), A. Ogawa (a2) and K. Matsui (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.