Skip to main content Accessibility help
×
Home

Crystallochemistry and structural studies of two newly CaSb0.50Fe1.50(PO4)3 and Ca0.50SbFe(PO4)3 Nasicon phases

  • Abderrahim Aatiq (a1), My Rachid Tigha (a1), Rabia Hassine (a1) and Ismael Saadoune (a2)

Abstract

Crystallographic structures of two new orthophosphates Ca0.50SbFe(PO4)3 and CaSb0.50Fe1.50(PO4)3 obtained by conventional solid state reaction techniques at 900 °C, were determined at room temperature from X-ray powder diffraction using Rietveld analysis. The two compounds belong to the Nasicon structural family. The space group is R3 for Ca0.50SbFe(PO4)3 and R3c for CaSb0.50Fe1.50(PO4)3. Hexagonal cell parameters for Ca0.50SbFe(PO4)3 and CaSb0.50Fe1.50(PO4)3 are: a=8.257(1) Å, c=22.276(2) Å, and a=8.514(1) Å, c=21.871(2) Å, respectively. Ca2+ and vacancies in {[Ca0.50]3a[◻0.50]3b}M1SbFe(PO4)3 are ordered within the two positions, 3a and 3b, of M1 sites. Structure refinements show also a quasi-ordered distribution of Sb5+ and Fe3+ ions within the Nasicon framework. Thus, in {[Ca0.50]3a[◻0.50]3b}M1SbFe(PO4)3, each Ca(3a)O6 octahedron shares two faces with two Fe3+O6 octahedra and each vacancy (◻(3b)O6) site is located between two Sb5+O6 octahedra. In [Ca]M1Sb0.50Fe1.50(PO4)3 compound (R3c space group), all M1 sites are occupied by Ca2+ and the Sb5+ and Fe3+ ions are randomly distributed within the Nasicon framework.

Copyright

Corresponding author

a)Electronic mail: a_aatiq@yahoo.fr

References

Hide All
Aatiq, A. (2004). “Synthesis and structural characterization of ASnFe(PO4)3 (A=Na2 ,Ca, Cd) phosphates with the Nasicon type structure,” Powder Diffr. PODIE2 10.1154/1.1725232 19, 272279.
Aatiq, A. and Dhoum, H. (2004). “Structure of AFeTi(PO4)3 (A=Ca, Cd) Nasicon phases from powder X-ray data,” Powder Diffr. PODIE2 10.1154/1.1604127 19, 157161.
Aatiq, A., Hassine, R., Tigha, R., and Saadoune, I. (2005). “Structures of two newly synthesized A0.50SbFe(PO4)3 (A=Mn, Cd) Nasicon phases,” Powder Diffr. PODIE2 10.1154/1.1862252 20, 3339.
Aatiq, A., Ménétrier, M., Croguennec, L., Suard, E., and Delmas, C. (2002). “On the structure of Li 3Ti2(PO4)3,” J. Mater. Chem. JMACEP 10.1039/b203652p 12, 29712978.
Aatiq, A., Ménétrier, M., El Jazouli, A., and Delmas, C. (2002). “Structural and lithium intercalation studies of Mn(0.5−x)CaxTi2(PO4)3 phases (0⩽x⩽0.50),” Solid State Ionics SSIOD3 10.1016/S0167-2738(02)00135-2 150, 391405.
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 10.1107/S0108768185002063 41, 244247.
Cherkaoui, F., Viala, J. C., Delmas, C., and Hagenmuller, P. (1986). “Crystal chemistry and ionic conductivity of a new Nasicon-related solid solution Na1+xZr2−x∕2Mgx2(PO4)3,” Solid State Ionics SSIOD3 21, 333337.
Delmas, C., Viala, J. C., Olazcuaga, R., Le Flem, G., Hagenmuller, P., Cherkaoui, F., and Brochu, R. (1981). “Ionic conductivity in Nasicon-type phases Na1+xZr2−xLx(PO4)3 (L=Cr, In, Yb),” Solid State Ionics SSIOD3 3/4, 209214.
Hagman, L. and Kierkegaard, P. (1968). “The crystal structure of NaMe2IV(PO4)3; Me=Ge, Ti, Zr,” Acta Chem. Scand. (1947-1973) ACSAA4 22, 18221932.
Hong, H. Y.-P. (1976). “Crystal structures and crystal chemistry in the system Na(1+x)Zr2SixP(3−x)O12,” Mater. Res. Bull. MRBUAC 10.1016/0025-5408(76)90073-8 11, 173182.
Krimi, S., Mansouri, I., El Jazouli, A., Chaminade, J. P., Gravereau, P., and Le Flem, G. (1993). “The structure of Na5Ti(PO4)3,” J. Solid State Chem. JSSCBI 10.1006/jssc.1993.1248 105, 561566.
Limaye, S. Y., Agrawal, D. K., and McKinstry, H. A. (1987). “Synthesis and thermal expansion of MZr 4P6O24 (M=Mg, Ca, Sr, Ba),” J. Am. Ceram. Soc. JACTAW 70, 232236.
Masquelier, C., Wurn, C., Rodriguez-Carvajal, J., Gaubicher, J., and Nazar, L. F. (2000). “A powder neutron diffraction investigation of the two rhombohedral Nasicon analogues: γ-Na3Fe2(PO4)3 and Li 3Fe2(PO4)3,” Chem. Mater. CMATEX 10.1021/cm991138n 12, 525532.
Nanjundaswamy, K. S., Padhi, A. K., Goodenoogh, J. B., Okada, S., Ohtsuka, H., Arai, H., and Yamaki, J. (1996). “Synthesis, redox potential evaluation and electrochemical characteristics of Nasicon-related-3D framework compounds,” Solid State Ionics SSIOD3 10.1016/S0167-2738(96)00472-9 92, 110.
Padhi, A. K., Nanjundaswamy, K. S., Masquelier, C., and Goodenoogh, J. B. (1997). “Mapping of transition metal redox energies in phosphates with Nasicon structure by lithium intercalation,” J. Electrochem. Soc. JESOAN 10.1149/1.1837868 144, 25812586.
Pikl, R., De Waal, D., Aatiq, A., and El Jazouli, A. (1998). “Vibrational spectra and factor group analysis of Mn(0.5+x)Ti(2−2x)Cr2x(PO4)3 (0⩽x⩽0.5),” Vib. Spectrosc. VISPEK 16, 137143.
Rodriguez-Carvajal, J. (1997). “Fullprof, Program for Rietveld refinement,” Laboratoire Léon Brillouin (CEA-CNRS) Saclay, France.
Roy, R., Vance, E. R., and Alamo, J. (1982). “[NZP], A new radiophase for ceramic nuclear waste forms,” Mater. Res. Bull. MRBUAC 17, 585589.
Serghini, A., Brochu, R., Olazcuaga, R., and Gravereau, R. (1995). “The monovalent copper tin phosphate CuSn 2(PO4)3,” Mater. Lett. MLETDJ 10.1016/0167-577X(94)00243-6 22, 149153.
Shannon, R. D. (1976). “Revised effective ionic and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. ACACBN 10.1107/S0567739476001551 A32, 751767.
Yin, S. C., Grondey, H., Strobel, P. S., and Nazar, L. F. (2004). Li 2.5V2(PO4)3: A room-temperature analogue to the fast-ion conducting high-temperature γ-phase of Li 3V2(PO4),” Chem. Mater. CMATEX 10.1021/cm034802f 16, 14561465.

Keywords

Related content

Powered by UNSILO

Crystallochemistry and structural studies of two newly CaSb0.50Fe1.50(PO4)3 and Ca0.50SbFe(PO4)3 Nasicon phases

  • Abderrahim Aatiq (a1), My Rachid Tigha (a1), Rabia Hassine (a1) and Ismael Saadoune (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.