Skip to main content Accessibility help

Crystalline microstructure of boehmites studied by multi-peak analysis of powder X-ray diffraction patterns

  • Pablo Pardo (a1), Marek Andrzej Kojdecki (a2), José Miguel Calatayud (a1), José María Amigó (a3) and Javier Alarcón (a1)...


Nanocrystalline boehmite (gamma-aluminium-oxyhydroxide) is a material of industrial importance, the functionality of which follows from its crystalline microstructure. A procedure for preparing boehmite nanoparticles, comprising the formation of a precipitate by the alkalization of an aqueous solution of aluminium nitrate and subsequent hydrothermal aging, was previously elaborated. The application of an additive (maltitol or tartaric acid) to control the sizes and shapes of crystallites in the produced polycrystalline powder of boehmite was developed. The aim of this work is a study of the effect of the hydrothermal treatment time on nanocrystalline characteristics of boehmite, both in absence and in presence of the additive. The obtained materials were investigated by using X-ray diffraction (XRD) as principal technique and additionally by scanning and transmission electron microscopy. The multi-peak analysis of powder XRD patterns was applied to determine the prevalent crystallite shape, volume-weighted crystallite size distribution, and second-order crystalline lattice strain distribution being principal quantitative characteristics of the crystalline microstructure. Based on these characteristics, three types of the microstructure correlated with the production procedures were observed and discussed in detail. The nanoparticles of boehmites were found to be monocrystalline grains with characteristic habits and sizes of order of ten nanometers weakly dependent on the hydrothermal treatment time.


Corresponding author

a) Author to whom correspondence should be addressed. Electronic mail: or


Hide All
Amoura, M., Nassif, N., Roux, C., Livage, J., and Coradin, T. (2007). “Sol-gel encapsulation of cells is not limited to silica: long-term viability of bacteria in alumina matrices,” Chem. Commun. 39, 40154017.
Auxilio, A. R., Andrews, P. C., Junk, P. C., Spiccia, L., Neumann, D., Raverty, W., Vanderhoek, N., and Pringle, J. M. (2008). “Functionalised pseudo-boehmite nanoparticles as an excellent adsorbent material for anionic dyes,” J. Mater. Chem. 18, 24662474.
Bai, X., Caputo, G., Hao, Z. D., Freitas, V. T., Zhang, J. H., Longo, R. L., Malta, O. L., Ferreira, R. A. S., and Pinna, N. (2014). “Efficient and tuneable photoluminescent boehmite hybrid nanoplates lacking metal activator centres for single-phase white LEDs,” Nat. Commun. 5, 5702, 18.
Bokhimi, X., Toledo-Antonio, J. A., Guzman-Castillo, M. L., Mar-Mar, B., Hernandez-Beltran, F., and Navarrete, J. (2001a). “Dependence of boehmite thermal evolution on its atom bond lengths and crystallite size,” J. Solid State Chem. 161, 319326.
Bokhimi, X., Toledo-Antonio, J. A., Guzman-Castillo, M. L., and Hernandez-Beltran, F. (2001b). “Relationship between crystallite size and bond lengths in boehmite,” J. Solid State Chem. 159, 3240.
Bokhimi, X., Sanchez-Valente, J., and Pedraza, F. (2002). “Crystallization of sol-gel boehmite via hydrothermal annealing,” J. Solid State Chem. 166, 182190.
Brühne, S., Gottlieb, S., Assmus, W., Alig, E., and Schmidt, M. U. (2008). “Atomic structure analysis of nanocrystalline boehmite AlO(OH),” Cryst. Growth Des. 8, 489493.
Cai, W. Q., Yu, J. G., Cheng, B., Su, B. L., and Jaroniec, M. (2009). “Synthesis of boehmite hollow core/shell and hollow microspheres via sodium tartrate-mediated phase transformation and their enhanced adsorption performance in water treatment,” J. Phys. Chem. C 113, 1473914746.
Cai, W. Q., Yu, J. G., Gu, S. H., and Jaroniec, M. (2010). “Facile hydrothermal synthesis of hierarchical boehmite: sulfate-mediated transformation from nanoflakes to hollow microspheres,” Cryst. Growth Des. 10, 39773982.
Chen, X. Y., Zhang, Z. H., Li, X. L., and Lee, S. W. (2008). “Controlled hydrothermal synthesis of colloidal boehmite (gamma-AlOOH) nanorods and nanoflakes and their conversion into gamma-Al2O3 nanocrystals,” Solid State Commun. 145, 368373.
Chen, Y. T., Santos, A., Wang, Y., Kumeria, T., Li, J. S., Wang, C. H., and Losic, D. (2015a). “Biomimetic nanoporous anodic alumina distributed bragg reflectors in the form of films and microsized particles for sensing applications,” ACS Appl. Mat. Interfaces 7, 1981619824.
Chen, Y. T., Santos, A., Wang, Y., Kumeria, T., Wang, C. H., Li, J. S., and Losic, D. (2015b). “Interferometric nanoporous anodic alumina photonic coatings for optical sensing,” Nanoscale 7, 77707779.
Chen, Y. T., Santos, A., Wang, Y., Kumeria, T., Ho, D. N., Li, J. S., Wang, C. H., and Losic, D. (2015c). “Rational design of photonic dust from nanoporous anodic alumina films: a versatile photonic nanotool for visual sensing,” Sci. Rep. 5.
Chiche, D., Digne, M., Revel, R., Chaneac, C., and Jolivet, J. P. (2008). “Accurate determination of oxide nanoparticle size and shape based on X-ray powder pattern simulation: application to boehmite AlOOH,” J. Phys. Chem. C 112, 85248533.
Chiche, D., Chizallet, C., Durupthy, O., Channeac, C., Revel, R., Raybaud, P., and Jolivet, J. P. (2009). “Growth of boehmite particles in the presence of xylitol: morphology oriented by the nest effect of hydrogen bonding,” Phys. Chem. Chem. Phys. 11, 1131011323.
Chiche, D., Chaneac, C., Revel, R., and Jolivet, J. P. (2011). “Use of polyols as particle size and shape controllers: application to boehmite synthesis from sol-gel routes,” Phys. Chem. Chem. Phys. 13, 62416248.
Corma, A. and Fornes, V. (1990). “Cracking of N-Heptane on fluorinated gamma-alumina catalysts in the presence of hydrogen – catalytic activity and nature of acid active-sites,” Appl. Catal. A-Gen. 61, 175185.
Dash, B., Tripathy, B. C., Bhattacharya, I. N., and Mishra, B. K. (2010). “Additive action on boehmite precipitation in sodium aluminate solution,” Dalton Trans. 39, 91089111.
Delgado-Pinar, E., Frias, J. C., Jimenez-Borreguero, L. J., Albelda, M. T., Alarcon, J., and Garcia-Espana, E. (2007). “One-pot preparation of surface modified boehmite nanoparticles with rare-earth cyclen complexes,” Chem. Commun. 32, 33923394.
Delgado-Pinar, E., Albelda, M. T., Frias, J. C., Barreiro, O., Tejera, E., Kubicek, V., Jimenez-Borreguero, L. J., Sanchez-Madrid, F., Toth, E., Alarcón, J., and Garcia-Espana, E. (2011). “Lanthanide complexes as imaging agents anchored on nano-sized particles of boehmite,” Dalton Trans. 40, 64516457.
Delgado-Pinar, E., Rotger, C., Costa, A., Pina, M. N., Jimenez, H. R., Alarcón, J., and Garcia-Espana, E. (2012). “Grafted squaramide monoamine nanoparticles as simple systems for sulfate recognition in pure water,” Chem. Commun. 48, 26092611.
Digne, M., Sautet, P., Raybaud, P., Toulhoat, H., and Artacho, E. (2002). “Structure and stability of aluminum hydroxides: a theoretical study,” J. Phys. Chem. B 106, 51555162.
Digne, M., Revel, R., Boualleg, M., Chiche, D., Rebours, B., Moreaud, M., Celse, B., Chaneac, C., and Jolivet, J. P. (2010). “Innovative characterizations and morphology control of gamma-AlOOH boehmite nanoparticles: towards advanced tuning of gamma-Al2O3 catalyst properties,” Proceedings of the 10th International Symposium on Scientific Bases for the Preparation of Heterogeneous Catalysts 175, 127134.
Eberl, D. D., Srodon, J., Kralik, M., Taylor, B. E., and Peterman, Z. E. (1990). “Ostwald ripening of clays and metamorphic minerals,” Science 248, 474477.
Edelman, R. (1980). “Vaccine adjuvants,” Rev. Infect. Dis. 2, 370383.
Edelman, R. (2001). “The development and use of vaccine adjuvants,” Mol. Biotechnol. 21, 129148.
Guzman-Castillo, M. L., Bokhimi, X., Toledo-Antonio, A., Salmones-Blasquez, J., and Hernandez-Beltran, F. (2001). “Effect of boehmite crystallite size and steaming on alumina properties,” J. Phys. Chem. B 105, 20992106.
He, T. B., Xiang, L., and Zhu, S. L. (2009). “Different nanostructures of boehmite fabricated by hydrothermal process: effects of pH and anions,” Crystengcomm 11, 13381342.
Iggland, M. and Mazzotti, M. (2012). “Population balance modeling with size-dependent solubility: ostwald ripening,” Cryst. Growth Des. 12, 14891500.
Jolivet, J. P., Froidefond, C., Pottier, A., Chaneac, C., Cassaignon, S., Tronc, E., and Euzen, P. (2004). “Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quantitative modelling,” J. Mater. Chem. 14, 32813288.
Jolivet, J. P., Cassaignon, S., Chaneac, C., Chiche, D., and Tronc, E. (2008). “Design of oxide nanoparticles by aqueous chemistry,” J. Sol-Gel Sci. Technol. 46, 299305.
Kaya, C., He, J. Y., Gu, X., and Butler, E. G. (2002). Nanostructured ceramic powders by hydrothermal synthesis and their applications,” Microporous Mesoporous Mat. 54, 3749.
Kojdecki, M. A. (2000). “New criterion of regularisation parameter choice in Tikhonov's method,” Biul. Mil. Univ. Technol. XLIX(1), 47126.
Kojdecki, M. A., de Sola, E. R., Serrano, F. J., Delgado-Pinar, E., Reventós, M. M., Esteve, V. J., Amigó, J. M., and Alarcón, J. (2007). “Microstructural evolution of mullites produced from single-phase gels,” J. Appl. Crystallogr. 40, 260276.
Kojdecki, M. A., de Sola, E. R., Serrano, F. J., Amigó, J. M., and Alarcón, J. (2009). “Comparative X-ray diffraction study of the crystalline microstructure of tetragonal and monoclinic vanadium-zirconium dioxide solid solutions produced from gel precursors,” J. Appl. Crystallogr. 42, 198210.
Krokidis, X., Raybaud, P., Gobichon, A. E., Rebours, B., Euzen, P., and Toulhoat, H. (2001). “Theoretical study of the dehydration process of boehmite to gamma-alumina,” J. Phys. Chem. B 105, 51215130.
Langford, J. I. (1978). “Rapid method for analyzing breadths of diffraction and spectral-lines using voigt function,” J. Appl.Crystallogr. 11, 1014.
Lock, N., Hald, P., Christensen, M., Birkedal, H., and Iversen, B. B. (2010). “Continuous flow supercritical water synthesis and crystallographic characterization of anisotropic boehmite nanoparticles,” J. Appl. Crystallogr. 43, 858866.
Mathieu, Y., Lebeau, B., and Valtchev, V. (2007). “Control of the morphology and particle size of boehmite nanoparticles synthesized under hydrothermal conditions,” Langmuir 23, 94359442.
Moreaud, M., Jeulin, D., Morard, V., and Revel, R. (2012). “TEM image analysis and modelling: application to boehmite nanoparticles,” J. Microsc. 245, 186199.
Nguefack, M., Popa, A. F., Rossignol, S., and Kappenstein, C. (2003). “Preparation of alumina through a sol-gel process. Synthesis, characterization, thermal evolution and model of intermediate boehmite,” Phys. Chem. Chem. Phys. 5, 42794289.
Okada, K., Nagashima, T., Kameshima, Y., Yasumori, A., and Tsukada, T. (2002). “Relationship between formation conditions, properties, and crystallite size of boehmite,” J. Colloid Interface Sci. 253, 308314.
Pardo, P., Calatayud, J. M., and Alarcon, J. (2014). “Improvement of boehmite nanoparticles’ aqueous dispersability by controlling their size, shape and crystallinity,” RSC Adv. 4, 4838948398.
Pardo, P., Serrano, F. J., Vallcorba, O., Calatayud, J. M., Amigó, J. M., and Alarcón, J. (2015). “Enhanced lateral to basal surface ratio in boehmite nanoparticles achieved by hydrothermal aging,” Cryst. Growth Des. 15, 35323538.
Price, R. L., Gutwein, L. G., Kaledin, L., Tepper, F., and Webster, T. J. (2003). “Osteoblast function on nanophase alumina materials: influence of chemistry, phase, and topography,” J. Biomed. Mater. Res. Part A 67A, 12841293.
Raybaud, P., Digne, M., Iftimie, R., Wellens, W., Euzen, P., and Toulhoat, H. (2001). “Morphology and surface properties of boehmite (gamma-AlOOH): a density functional theory study,” J. Catal. 201, 236246.
Rutenberg, A., Vinogradov, V. V., and Avnir, D. (2013). “Synthesis and enhanced thermal stability of albumins@alumina: towards injectable sol-gel materials,” Chem. Commun. 49, 56365638.
Sanchez-Valente, J., Bokhimi, X., and Toledo, J. A. (2004). “Synthesis and catalytic properties of nanostructured aluminas obtained by sol-gel method,” Appl. Catal. A-Gen. 264, 175181.
Santos, P. D., Coelho, A. C. V., Santos, H. D., and Kiyohara, P. K. (2009). “Hydrothermal synthesis of well-crystallised boehmite crystals of various shapes,” Mater. Res.-Ibero-am. J. Mater. 12, 437445.
Scherrer, P. (1918). “Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen,” Nachr. Ges. Wiss. Göttingen, 26 Juli, 98100.
Shen, S. C., Ng, W. K., Chia, L. S. O., Dong, Y. C., and Tan, R. B. H. (2012). “Morphology controllable synthesis of nanostructured boehmite and gamma-alumina by facile dry gel conversion,” Cryst. Growth Des. 12, 49874994.
Tettenhorst, R. and Hofmann, D. A. (1980). “Crystal-chemistry of boehmite,” Clays Clay Min. 28, 373380.
Tikhonov, A. N., Goncharsky, A. V., Stepanov, V. V., and Yagola, A. G. (1995). Numerical Methods for the Solution of Ill-posed Problems (Kluwer, Dordrecht).
Webster, T. J., Hellenmeyer, E. L., and Price, R. L. (2005). “Increased osteoblast functions on theta plus delta nanofiber alumina,” Biomaterials 26, 953960.
Wei, Y., Yang, R., Zhang, Y. X., Wang, L., Liu, J. H., and Huang, X. J. (2011). “High adsorptive gamma-AlOOH(boehmite)@SiO2/Fe3O4 porous magnetic microspheres for detection of toxic metal ions in drinking water,” Chem. Commun. 47, 1106211064.
Xia, Y. G., Jiao, X. L., Liu, Y. J., Chen, D. R., Zhang, L., and Qin, Z. H. (2013). “Study of the formation mechanism of boehmite with different morphology upon surface hydroxyls and adsorption of chloride ions,” J. Phys. Chem. C 117, 1527915286.
Yoldas, B. E. (1973). “Hydrolysis of aluminum alkoxides and bayerite conversion,” J. Chem. Technol. Biotechnol. 23, 803809.
Zenobi, M. C., Luengo, C. V., Avena, M. J., and Rueda, E. H. (2010). “An ATR-FTIR study of different phosphonic acids adsorbed onto boehmite,” Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 75, 12831288.
Zhao, H. H., Song, H. L., Miao, Z. C., and Chou, L. J. (2014). “Isobutane dehydrogenation over chromia alumina catalysts prepared from MIL-101: insight into chromium species on activity and selectivity,” J. Energy Chem. 23, 708716.


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Pardo supplementary material
Pardo supplementary material 1

 PDF (278 KB)
278 KB

Crystalline microstructure of boehmites studied by multi-peak analysis of powder X-ray diffraction patterns

  • Pablo Pardo (a1), Marek Andrzej Kojdecki (a2), José Miguel Calatayud (a1), José María Amigó (a3) and Javier Alarcón (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.