Skip to main content Accessibility help
×
Home

Crystal structures of newly synthesized SbV1.50FeIII0.50(PO4)3 and (SbV0.50FeIII0.50)P2O7

  • Abderrahim Aatiq (a1) and Rachid Bakri (a1)

Abstract

Synthesis and structure of two phosphates belonging to the ternary Sb2O5-Fe2O3-P2O5 system are reported. Structures of both SbV1.50FeIII0.50(PO4)3 and (SbV0.50FeIIIe0.50)P2O7 phases, obtained by solid state reaction in air atmosphere at 950 °C and 900 °C, respectively, were determined at room temperature from X-ray powder diffraction using the Rietveld method. Sb1.50Fe0.50(PO4)3 phosphate belongs to the Nasicon-type structure with R32 space group. Hexagonal cell parameters are ahex.=8.305(1) Å and chex.=22.035(2) Å. Rietveld refinement results show a 2-2 ordered distribution, along the c-axis, of X(1) and X(2) sites (crystallographic formula [Sb0.88Fe0.12]X(1)[Fe0.38Sb0.62]X(2)(PO4)3) in the Nasicon framework. (Sb0.50Fe0.50)P2O7 is isotypic with β-SbP2O7 pyrophosphate [Pna21 space group; a=7.865(1) Å, b=15.699(2) Å, c=7.847(1) Å]. Its crystal structure is built up from corner-shared SbO6 or FeO6 octahedra and P2O7 groups (two group types). Each P2O7 group shares its six vertices with three SbO6 and three FeO6 octahedra, and each octahedra is connected to six P2O7 groups. A quasi 1-1 ordered distribution, along the b-axis, of Sb5+ and Fe3+ ions in the pyrophosphate framework are observed.

Copyright

References

Hide All
Aatiq, A., Hassine, R., Tigha, R., and Saadoune, I. (2005). “Structures of two newly synthesized A0.50SbFe(PO4)3 (A=Mn, Cd) Nasicon phases,” Powder Diffr.PODIE210.1154/1.1862252 20, 3339.
Aatiq, A., Tigha, R., Hassine, R., and Saadoune, I. (2006). “Crystallochemistry and structural studies of two newly CaSb0.50Fe1.50(PO4)3 and Ca0.50SbFe(PO4)3 Nasicon phases,” Powder Diffr.PODIE210.1154/1.2104535 21, 4551.
Birkedal, H., Andersen, A. M. K., Arakcheeva, A., Chapuis, G., Norby, P., and Pattison, P. (2006). “The room-temperature superstructure of ZrP2O7 is orthorhombic: there are no unusual 180° P-O-P bond angles,” Inorg. Chem.INOCAJ 45, 43464351.
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK10.1107/S0108768185002063 B41, 244247.
Hagman, L. and Kierkegaard, P. (1968). “The crystal structure of NaMe 2(PO4)3IV; Me=Ge, Ti, Zr,” Acta Chem. Scand.ACHSE7 22, 18221932.
ICDD. (1994). “Powder diffraction file,” International Centre for Diffraction Data, edited by Frank McClune, , 12 Campus Boulevard, Newtown Square, PA 19073–3272.
ICDD. (1998). “Powder diffraction file,” International Centre for Diffraction Data, edited by Frank McClune, , 12 Campus Boulevard, Newtown Square, PA 19073–3272.
Jouanneaux, A., Verbaere, A., Guyomard, D., Piffard, Y., Oyetola, S., and Fitch, A. N. (1991). “Sb2(PO4)3, a new mixed-valence antimony phosphate. Preparation and crystal structure,” Eur. J. Solid State Inorg. Chem.EJSCE5 28, 755765.
Jouanneaux, A., Fitch, A. N., Oyetola, S., Verbaere, A., Guyomard, D., and Piffard, Y. (1993). “The MIIIM′V1/2(PO4)33/2 compounds; M=Sb, Nd, Eu, Bi; M′=Sb, Nb, Ta. Preparation and structure,” Eur. J. Solid State Inorg. Chem.EJSCE5 30, 125137.
Kasahara, K., Imoto, H., and Saito, T. (1995). “Preparation and crystal structure of a new form of Sb2(PO4)3 and M½SbV3/2(PO4)3 (M=Y, In, and Sc),” J. Solid State Chem.JSSCBI 118, 104111.
Krimi, S., Mansouri, I., El Jazouli, A., Chaminade, J. P., Gravereau, P., and Le Flem, G. (1993). “The structure of Na5Ti(PO4)3,” J. Solid State Chem.JSSCBI10.1006/jssc.1993.1248 105, 561566.
Levi, G. R. and Peyronel, G. (1935). “Sructura cristallographica del gruppo isomorpho (Si, Ti, Zr, Sn, Hf)P2O7,” Z. Kristallogr.ZEKRDZ 92, 190209.
Oyetola, S., Verbaere, A., Guyomard, D., and Piffard, Y. (1988). “BiIII0.50SbV1.5(PO4)3: a new type of M2(XO4)3 framework related to garnet and Nasicon,” J. Solid State Chem.JSSCBI10.1016/0022-4596(88)90096-5 77, 102111.
Oyetola, S., Verbaere, A., Guyomard, D., Grossnier, M. P., Piffard, Y., and Tournoux, M. (1991). “New ZrP2O7-like diphosphates of either mixed (MIII0.50M′V0.50) cations (M=Sb, Bi, Nd, Eu; M′=Sb, Nb, Ta) or M′V cations (M′V=Ta, Nb): synthesis and structure,” Eur. J. Solid State Inorg. Chem.EJSCE5 28, 2336.
Rodriguez-Carvajal, J. (1997). “Fullprof, Program for Rietveld refinement,” Laboratoire Léon Brillouin (CEA-CNRS) Saclay, France.
Sanz, J., Iglesias, J. E., Soria, J., Losilla, E. R., Aranda, M. A. G., and Bruque, S. (1997). “Structural disorder in the cubic 3×3×3 superstructure of TiP2O7. XRD and NMR study,” Chem. Mater.CMATEX10.1021/cm970057t 9, 9961003.
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.ACACBN10.1107/S0567739476001551 32, 751767.
Varga, T., Wilkinson, A. P., Haluska, M. S., and Payzant, E. A. (2005). “Preparation and thermal expansion of (MIII0.50M′V0.50)P2O7 with the cubic ZrP2O7 structure,” J. Solid State Chem.JSSCBI 178, 35413546.
Verbaere, A., Oyetola, S., Guyomard, D., and Piffard, Y. (1988). “New mixed-valence antimony phosphates, α- and β-SbIIISbV(P2O7)2,” J. Solid State Chem.JSSCBI 75, 217224.

Keywords

Related content

Powered by UNSILO

Crystal structures of newly synthesized SbV1.50FeIII0.50(PO4)3 and (SbV0.50FeIII0.50)P2O7

  • Abderrahim Aatiq (a1) and Rachid Bakri (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.