Skip to main content Accessibility help
×
Home

Crystal structures of ammonium citrates

  • Austin M. Wheatley (a1) and James A. Kaduk (a1) (a2)

Abstract

The crystal structures of (NH4)H2C6H5O7 and (NH4)3C6H5O7 have been determined using a combination of powder and single crystal techniques. The structure of (NH4)2HC6H5O7 has been determined previously by single crystal diffraction. All three structures were optimized using density functional techniques. The crystal structures are dominated by N-H⋅⋅⋅O hydrogen bonds, though O-H⋅⋅⋅O hydrogen bonds are also important. In (NH4)H2C6H5O7 very strong centrosymmetric charge-assisted O-H-O hydrogen bonds link one end of the citrate into chains along the b-axis. A more-normal O-H⋅⋅⋅O hydrogen bond links the other end of the citrate to the central ionized carboxyl group. In (NH4)2HC6H5O7, the very strong centrosymmetric O-H-O hydrogen bonds link the citrates into zig-zag chains along the b-axis. The citrates occupy layers parallel to the bc plane, and the ammonium ions link the layers through N-H⋅⋅⋅O hydrogen bonds. In (NH4)3C6H5O7, the hydroxyl group forms a hydrogen bond to a terminal carboxylate, and there is an extensive array of N-H⋅⋅⋅O hydrogen bonds. The energies of the density functional theory-optimized structures lead to a correlation between the energy of an N-H⋅⋅⋅O hydrogen bond and the Mulliken overlap population: E(N-H⋅⋅⋅O) (kcal/mole) = 23.1(overlap)½. Powder patterns of (NH4)H2C6H5O7 and (NH4)3C6H5O7 have been submitted to International Centre for Diffraction Data for inclusion in the powder diffraction file.

Copyright

Corresponding author

a)Author to whom correspondence should be addressed. Electronic mail: kaduk@polycrystallography.com

References

Hide All
Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.
Andrade, L. C. R., Costa, M. M. R., Paixão, J. A., Santos, M. L., Agostinho Moreira, J., and Almeida, A. (2002). “Crystal structure of diammonium hydrogen-2-hydroxy-1,2,3-propanetricarboxylate, (NH4)2(C6H6O7),Z. Kristallogr. NCS 217, 537538.
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).
Cigler, A. J. and Kaduk, J. A. (2018). “Dilithium (citrate) crystals and their relatives,Acta Cryst. Sect. C 74(10), 11601170.
Dassault Systèmes (2018). Materials Studio 2018 (BIOVIA, San Diego CA).
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Amer. Mineral. 22, 446467.
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D-Arco, P., Noël, Y., Causà, M., and Kirtman, B. (2014). “CRYSTAL14: a program for the ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114, 12871317.
Favre-Nicolin, V. and Černý, R. (2002). FOX, “Free Objects for crystallography: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.
Fawcett, T. G., Kabekkodu, S. N., Blanton, J. R., and Blanton, T. N. (2017). “Chemical analysis by diffraction: the Powder Diffraction File™,” Powder Diffr. 32(2), 6371.
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr. 27(6), 892900.
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.
Gong, P. (1980). “Ammonium citrate,” ICDD Grant-in-Aid, PDF entry 00-031-1531.
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge Structural Database,” Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 72, 171179.
Kaduk, J. A. (2002). “Use of the inorganic crystal structure database as a problem solving tool,” Acta Cryst. Sect B: Struct. Sci. 58, 370379.
Kaduk, J. A. and Stern, C. (2016a). “Potassium dihydrogen citrate,” CSD Refcodes ZZZEJE01 and ZZZEJE02.
Kaduk, J. A. and Stern, C. (2016b). “Potassium dihydrogen citrate dihydrate,” CSD Refcodes FAFMAD and FAFMAD01.
Kresse, G., and Furthmüller, J. (1996). “Efficiency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis Set,” Comput. Mater. Sci. 6, 1550.
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Los Alamos National Laboratory Report LAUR 86-784).
Love, W. E. and Patterson, A. L. (1960). “X-ray crystal analysis of the substrates of aconitase. III. Crystallization, cell constants, and space groups of some alkali citrates,” Acta Crystallogr. 13(5), 426428.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). “Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.
Materials Design (2016). MedeA 2.20.4 (Materials Design Inc., Angel Fire NM).
Peintinger, M. F., Vilela Oliveira, D., and Bredow, T. (2013). “Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations,” J. Comput. Chem. 34, 451459.
Rammohan, A. and Kaduk, J. A. (2016a). “Sodium potassium hydrogen citrate, NaKHC6H5O7,” Acta Cryst. E 72, 170173.
Rammohan, A. and Kaduk, J. A. (2016b). “Sodium dipotassium citrate, NaK2C6H5O7,” Acta Cryst. E 72, 403406.
Rammohan, A. and Kaduk, J. A. (2016c). “Trisodium citrate, Na3(C6H5O7),” Acta Cryst. E 72, 793796.
Rammohan, A. and Kaduk, J. A. (2016d). “A second polymorph of sodium dihydrogen citrate, NaH2C6H5O7: structure solution from powder diffraction data and DFT comparison,” Acta Cryst. E 72, 854857.
Rammohan, A. and Kaduk, J. A. (2016e). “Crystal structure of anhydrous tripotassium citrate from laboratory X-ray powder diffraction data and DFT comparison,” Acta Cryst. E 72, 11591162.
Rammohan, A., Sarjeant, A. A., and Kaduk, J. A. (2016). “Disodium hydrogen citrate sesquihydrate, Na2HC6H5O7(H2O)1.5,” Acta Cryst. E 72, 943946.
Rammohan, A. and Kaduk, J. A. (2017a). “Crystal structure of dirubidium hydrogen citrate from laboratory X-ray powder diffraction data and DFT comparison,” Acta Cryst. E 73, 9295.
Rammohan, A. and Kaduk, J. A. (2017b). “Crystal structure of trirubidium citrate monohydrate from laboratory X-ray powder diffraction data and DFT comparison,” Acta Cryst. E 73, 227230.
Rammohan, A. and Kaduk, J. A. (2017c). “Crystal structure of trirubidium citrate from laboratory X-ray powder diffraction data and DFT comparison,” Acta Cryst. E 73, 250253.
Rammohan, A. and Kaduk, J. A. (2017d). “Crystal structure of pentasodium hydrogen dicitrate from synchrotron X-ray powder diffraction data and DFT comparison,” Acta Cryst. E 73, 286290.
Rammohan, A. and Kaduk, J. A. (2017e). “Crystal structure of caesium dihydrogen citrate from laboratory X-ray powder diffraction data and DFT comparison,” Acta Cryst. E 73, 133136.
Rammohan, A. and Kaduk, J. A. (2017f). CSD Communication 1525884.
Rammohan, A. and Kaduk, J. A. (2018). “Crystal structures of alkali metal (Group 1) citrate salts,” accepted by Acta Cryst. Sect. B: Cryst. Eng. Mater./Acta Cryst. Sect. C: Struct. Chem.; hw5048.
Rammohan, A., Sarjeant, A. A., and Kaduk, J. A. (2017a). “Crystal structure of dicaesium hydrogen citrate from laboratory single-crystal and powder X-ray diffraction data and DFT comparison,” Acta Cryst. E 73, 231234.
Rammohan, A., Sarjeant, A. A., and Kaduk, J. A. (2017b). “Tricaesium citrate monohydrate, Cs3C6H5O7·H2O: crystal structure and DFT comparison,” Acta Cryst. E 73, 520523.
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. 32, 281289.
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr. 20(2), 7983.
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Cryst. Sect. B: Struct. Sci., Cryst. Eng. Mater., 70(6), 10201032.
Venkateshwarlu, M., Bhaskar Rao, T., and Kishan Rao, K. (1989). “Growth and characterization of triammonium citrate,” Bull. Mater. Sci. 12(2), 146146.
Venkateshwarlu, M., Hussain, K. A., and Bhaskar Rao, T. (1993). “X-ray data for triammonium citrate,” Powder Diffr. 8(3), 173174.
Visser, J. (1979). “Ammonium hydrogen citrate,” ICDD Grant-in-Aid, PDF entry 00-031-1529.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Wheatley and Kaduk supplementary material
Wheatley and Kaduk supplementary material 1

 Unknown (376 KB)
376 KB

Crystal structures of ammonium citrates

  • Austin M. Wheatley (a1) and James A. Kaduk (a1) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed