Skip to main content Accessibility help

Crystal structure of solifenacin hydrogen succinate, C23H27N2O2(HC4H4O4)

  • James A. Kaduk (a1), Joel W. Reid (a2), Kai Zhong (a3), Amy M. Gindhart (a3) and Thomas N. Blanton (a3)...


The crystal structure of solifenacin hydrogen succinate [C23H27N2O2(HC4H4O4)] has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Solifenacin hydrogen succinate crystallizes in space group P21 (#4) with a = 6.477 03(2), b = 7.830 95(2), c = 23.848 72(7) Å, β = 90.2373(3)°, V = 1209.63(1) Å3, and Z = 2. The hydrogen succinate anions form a chain linked by strong hydrogen bonds parallel to the a-axis. Discrete N–H···O hydrogen bonds lie on the sides of this chain, resulting in a layer parallel to the ab-plane rich in hydrogen bonds. Halfway between these layers the molecules meet in a herringbone packing of aromatic rings. The powder pattern has been submitted to ICDD for inclusion in future releases of the Powder Diffraction File™.


Corresponding author

a) Author to whom correspondence should be addressed. Electronic mail:


Hide All
Accelrys (2013). Materials Studio 7.0 (Accelrys Software Inc., San Diego, CA).
Allen, F. H. (2002). “The Cambridge Structural Database: a quarter of a million crystal structures and rising,” Acta Crystallogr. Sect. B, Struct. Sci. 58, 380388.
Bernstein, J., Davis, R. E., Shimoni, L., and Chang, N. L. (1995). “Patterns in hydrogen bonding: functionality and graph set analysis in crystals,” Angew. Chem. Int. Ed. Engl. 34(15), 15551573.
Boultif, A. and Louer, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr. 37, 724731.
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Amer. Mineral. 22, 446467.
Dovesi, R., Orlando, R., Civalleri, B., Roetti, C., Saunders, V. R., and Zicovich-Wilson, C. M. (2005). “CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals,” Z. Kristallogr. 220, 571573.
Etter, M. C. (1990). “Encoding and decoding hydrogen-bond patterns of organic compounds,” Acc. Chem. Res. 23(4), 120126.
Favre-Nicolin, V. and Černý, R. (2002). “FOX, Free Objects for crystallography: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr. 27(6), 892900.
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals – the case of urea,” J. Chem. Phys. 101, 1068610696.
ICDD (2014), PDF-4+ 2014 (Database), edited by Kabekkodu, Dr. Soorya, International Centre for Diffraction Data, Newtown Square, PA, USA.
Laugier, J. and Bochu, B. (2000). “LMGP-Suite Suite of Programs for the interpretation of X-ray Experiments,” ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Saint Martin d'Hères, France. and
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS), (Los Alamos National Laboratory Report LAUR 86–784).
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchron. Radiat. 15(5), 427432.
Naito, R., Yonetoku, Y., Okamoto, Y., Toyoshima, A., Ikeda, K., and Takeuchi, M. (2005). “Synthesis and antimuscarinic properties of Quinuclidin-3-yl 1,2,3,40 tetrahydroisoquinoline-2-carboxylate derivatives as novel muscarinic receptor antagonists,” J. Med. Chem. 48, 65976606.
O'Boyle, N., Banck, M., James, C. A., Morley, C., Vandermeersch, T. and Hutchison, G. R. (2011). “Open Babel: an open chemical toolbox,” J. Chem. Inf. 3, 33.
Shields, G. P., Raithby, P. R., Allen, F. H., and Motherwell, W. S. (2000). “The assignment and validation of metal oxidation states in the Cambridge Structural Database,” Acta Crystallogr. Sec. B: Struct. Sci. 56(3), 455465.
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. 32, 281289.
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.
Thalladi, V. R., Nüsse, M., and Boese, R. (2000). “The melting point alternation in α, ω-alkanedicarboxylic acids,” J. Amer. Chem. Soc. 122(38), 92279236.
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3 ,” J. Appl. Crystallogr. 20(2), 7983.
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. Sect. B: Struct. Sci. 70(6), 10201032.
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the Advanced Photon Source: commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.
Wavefunction, Inc. (2013). Spartan ‘14 Version 1.1.0, Wavefunction Inc., 18401 Von Karman Ave., Suite 370, Irvine CA 92612.


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Kaduk supplementary material
Kaduk supplementary material 1

 Unknown (2.7 MB)
2.7 MB
Supplementary materials

Kaduk supplementary material
Kaduk supplementary material 2

 Unknown (9 KB)
9 KB

Crystal structure of solifenacin hydrogen succinate, C23H27N2O2(HC4H4O4)

  • James A. Kaduk (a1), Joel W. Reid (a2), Kai Zhong (a3), Amy M. Gindhart (a3) and Thomas N. Blanton (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.