Skip to main content Accessibility help
×
Home

Crystal structure of sitagliptin dihydrogen phosphate monohydrate, C16H16F6N5O(H2PO4)(H2O)

  • James A. Kaduk (a1), Kai Zhong (a2), Amy M. Gindhart (a2) and Thomas N. Blanton (a2)

Abstract

The crystal structure of sitagliptin dihydrogen phosphate monohydrate (sometimes referred to as sitagliptin phosphate monohydrate) has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Sitagliptin dihydrogen phosphate monohydrate crystallizes in space group P212121 (#19) with a = 6.137 108(12), b = 9.304 018(14), c = 38.307 67(10) Å, V = 2187.359(8) Å3, and Z = 4. The sitagliptin cation folds so that the two planar portions are roughly parallel. The ammonium group of the sitagliptin cation, the phosphate anion, and the water molecule form a network of strong hydrogen bonds. The result is a two-dimensional network, parallel to the ab plane. Halfway between these hydrogen bond planes, there are planes of high fluorine density. The powder pattern is included in the Powder Diffraction File™ as entry 00-064-1500.

Copyright

Corresponding author

a) Author to whom correspondence should be addressed. Electronic mail: kaduk@polycrystallography.com

References

Hide All
Accelrys (2013). Materials Studio 7.0 (Accelrys Software Inc., San Diego, CA).
Allen, F. H. (2002). “The Cambridge Structural Database: a quarter of a million crystal structures and rising,” Acta Crystallogr. B 58, 380388.
Altomare, A., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A., and Rizzi, R. (2009). “EXPO2009: structure solution by powder data in direct and reciprocal space,” J. Appl. Crystallogr. 42(6), 11971202.
Bernstein, J., Davis, R. E., Shimoni, L., and Chang, N. L. (1995). “Patterns in hydrogen bonding: functionality and graph set analysis in crystals,” Angew. Chem. Int. Ed. Engl. 34(15), 15551573.
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.
Cypes, S. H., Chen, A. M., Ferlita, R. R., Hansen, K., Lee, I., Vydra, V. K., and Wenslow, R. M. (2005). “Phosphoric Acid Salt of a Dipeptidyl Peptidase-IV Inhibitor,” U.S. Patent 2005/0032804.
Cypes, S. H., Chen, A. M., Ferlita, R. R., Hansen, K., Lee, I., Vydra, V. K., and Wenslow, R. M. (2008). “Phosphoric Acid Salt of a Dipeptidyl Peptidase-IV Inhibitor,” U.S. Patent 7,326,708.
David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S., and Cole, J. C. (2006). “DASH: a program for crystal structure determination from powder diffraction data,” J. Appl. Crystallogr. 39, 910915.
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Amer. Mineral. 22, 446467.
Dovesi, R., Saunders, V. R., Roetti, C., Orlando, R., Zicovich-Wilson, C. M., Pascale, F., Civalleri, B., Doll, K., Harrison, N. M., Bush, I. J., D-Arco, Ph., Llunell, M., Causà, , and Noël, Y. (2014). CRYSTAL14 User's Manual. University of Torino; http://www.crystal.unito.it
Etter, M. C. (1990). “Encoding and decoding hydrogen-bond patterns of organic compounds,” Acc. Chem. Res. 23(4), 120126.
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr. 27(6), 892900.
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals – the case of urea,” J. Chem. Phys. 101, 1068610696.
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chem. Acta 44, 129138.
ICDD (2014). PDF-4+ 2014 (Database), edited by Dr. Soorya Kabekkodu (International Centre for Diffraction Data, Newtown Square, PA, USA).
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS), (Los Alamos National Laboratory Report LAUR 86-784).
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchroton Radiat. 15(5), 427432.
Louër, D. and Boultif, A. (2007). “Powder pattern indexing and the dichotomy algorithm,” Z. Kristallogr. Suppl. 2007, 191196.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). “Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.
McKinnon, J. J., Spackman, M. A., and Mitchell, A. S. (2004). “Novel tools for visualizing and exploring intermolecular interactions in molecular crystals,” Acta Crystallogr. B 60, 627668.
Nada, R., Catlow, C. R. A., Pisani, C., and Orlando, R. (1993). “Ab initio Hartree-Fock perturbed-cluster study of neutral defects in LiF,” Model. Simul. Mater. Sci. Eng. 1, 165187.
O'Boyle, N., Banck, M., James, C. A., Morley, C., Vandermeersch, , and Hutchison, G. R. (2011). “Open Babel: an open chemical toolbox,” J. Chem. Inf. 3, 33; Doi: 10.1186/1758-2946.
Shields, G. P., Raithby, P. R., Allen, F. H., and Motherwell, W. S. (2000). “The assignment and validation of metal oxidation states in the Cambridge Structural Database,” Acta Crystallogr. B 56(3), 455465.
Spackman, M. A. and Jayatilaka, D. (2009). “Hirshfeld surface analysis,” CrystEngComm 11, 1932.
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. 32, 281289.
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3 ,” J. Appl. Crystallogr. 20(2), 7983.
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. B 70(6), 10201032.
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the Advanced Photon Source: commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.
Wavefunction, Inc. (2013). Spartan ‘14 version 1.1.0 (Wavefunction Inc.), 18401 Von Karman Ave., Suite 370, Irvine CA 92612.
Wolff, S. K., Grimwood, D. J., McKinnon, M. J., Turner, M. J., Jayatilaka, D., and Spackman, M. A. (2012). CrystalExplorer version 3.1 (University of Western Australia).
Zicovich-Wilson, C. M., Bert, A., Roetti, C., Dovesi, R., and Saunders, V. R. (2002). “Characterization of the electronic structure of crystalline compounds through their localized Wannier functions,” J. Chem. Phys. 116, 11201127.

Keywords

Related content

Powered by UNSILO
Type Description Title
UNKNOWN
Supplementary materials

Kaduk supplementary material
Kaduk supplementary material 1

 Unknown (2.7 MB)
2.7 MB
UNKNOWN
Supplementary materials

Kaduk supplementary material
Kaduk supplementary material 2

 Unknown (7 KB)
7 KB

Crystal structure of sitagliptin dihydrogen phosphate monohydrate, C16H16F6N5O(H2PO4)(H2O)

  • James A. Kaduk (a1), Kai Zhong (a2), Amy M. Gindhart (a2) and Thomas N. Blanton (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.