Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T22:43:51.175Z Has data issue: false hasContentIssue false

The crystal structure of MoO2(O2)(H2O)·H2O

Published online by Cambridge University Press:  07 February 2019

Joel W. Reid*
Affiliation:
Canadian Light Source, 44 Innovation Boulevard, Saskatoon, SK, S7N 2V3, Canada
James A. Kaduk
Affiliation:
Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, Illinois, 60616
Lidia Matei
Affiliation:
Canadian Isotope Innovations Corp., 232-111 Research Drive, Saskatoon, SK, S7N 3R2, Canada
*
a)Author to whom correspondence should be addressed. Electronic mail: joel.reid@lightsource.ca

Abstract

The crystal structure of MoO2(O2)(H2O)·H2O has been solved using parallel tempering with the FOX software package and refined using synchrotron powder diffraction data obtained from beamline 08B1-1 at the Canadian Light Source. Rietveld refinement, performed with the software package GSAS, yielded monoclinic lattice parameters of a = 17.3355(5) Å, b = 3.83342(10) Å, c = 6.55760(18) Å, and β = 91.2114(27)° (Z = 4, space group I2/m). The structure is composed of double zigzag molybdate chains running parallel to the b-axis. The Rietveld refined structure was compared with density functional theory (DFT) calculations performed with CRYSTAL14, and shows comparable agreement with two DFT optimized structures of similar energy, which differ by the location of the molybdate coordinated water molecule. The true structure is likely a disordered combination of the two DFT optimized structures.

Type
Technical Article
Copyright
Copyright © International Centre for Diffraction Data 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boultif, A. and Louer, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr. 37, 724731.Google Scholar
Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model (Oxford University Press, New York).Google Scholar
Cora, F., Patel, A., Harrison, N. M., Roetti, C., and Catlow, C. R. A. (1997). “An ab-initio Hartree-Fock study of alpha-MoO3,” J. Mater. Chem. 7, 959967.Google Scholar
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D'Arco, P., Noel, Y., Causa, M., Rerat, M., and Kirtman, B. (2014). “CRYSTAL14: a program for the ab initio investigation of crystalline solids,” Int. J. Quant. Chem. 114, 12871313.Google Scholar
Favre-Nicolin, V. and Černý, R. (2002). “FOX, ‘free objects for crystallography’: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.Google Scholar
Fodje, M., Grochulski, P., Janzen, K., Labiuk, S., Gorin, J., and Berg, R. (2014). “08B1-1: an automated beamline for macromolecular crystallography experiments at the Canadian light source,” J. Synchrotron Rad. 21, 633637.Google Scholar
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals – the case of urea,” J. Chem. Phys. 101, 1068610696.Google Scholar
Hoedl, S. A. and Updegraff, W. D. (2015). “The production of medical isotopes without nuclear reactors or uranium enrichment,” Sci. Global Sec. 23, 121153.Google Scholar
ICDD (2016). PDF-4 + 2016 (Database). edited by Dr. Kabekkodu, S. (International Centre for Diffraction Data, Newtown Square, PA, USA).Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Report No. LAUR 86-748), Los Alamos National Laboratory, Los Alamos, NM.Google Scholar
Le Bail, A., Duroy, H., and Fourquet, J. L. (1988). “Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction,” Mater. Res. Bull. 23, 447452.Google Scholar
Lougheed, T. (2017). Canada's neutron scientists lament closure of world's oldest nuclear reactor. Science, http://www.sciencemag.org/news/2017/09/canada-s-neutron-scientists-lament-closure-world-s-oldest-nuclear-reactor.Google Scholar
Lyra, M., Charalambatou, P., Roussou, E., Fytros, S., and Baika, I. (2011). “Alternative production methods to face global molybdenum-99 supply shortage,” Hell. J. Nucl. Med. 14, 4955.Google Scholar
Momma, K. and Izumi, F. (2011). “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr. 44, 12721276.Google Scholar
Pecquenard, B., Castro-Garcia, S., Livage, J., Zavalij, P. Y., Whittingham, M. S., and Thouvenot, R. (1998). “Structure of hydrated tungsten peroxides [WO2(O2)H2O]·nH2O,” Chem. Mater. 10, 18821888.Google Scholar
Rammohan, A. and Kaduk, J. A. (2018). “Crystal structures of alkali metal (Group 1) citrate salts,” Acta Crystallogr. B 74, 239252.Google Scholar
Reid, J. W., Kaduk, J. A., and Olson, J. A. (2017). “The crystal structure of Na(NH4)Mo3O10·H2O,” Powder Diffr. 32, 140147.Google Scholar
Reid, J. W., Kaduk, J. A., and Matei, L. (2018). “The crystal structure of MoO2(O2)·H2O,” Powder Diffr. 33, 4954.Google Scholar
Rodriguez-Carvajal, J. (2001). “Recent developments of the program FULLPROF,” IUCR Newslett. 26, 1219.Google Scholar
Sasaki, S. (1989). Numerical Tables of Anomalous Scattering Factors Calculated by the Cromer and Lieberman's Method. KEK Report 88-14.Google Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). Rietveld refinement of Debye-Scherrer synchrotron X-ray data from A1203,” J. Appl. Crystallogr. 20, 7983.Google Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.Google Scholar
Toby, B. H. and Von Dreele, R. B. (2013). “GSAS II: the genesis of a modern open-source all-purpose crystallography software package,” J. Appl. Crystallogr. 46, 544549.Google Scholar
Van Noorden, R. (2013). “The medical testing crisis,” Nature 504, 202204.Google Scholar
Welsh, J., Bigles, C. I., and Valderrabano, A. (2015). “Future U.S. supply of Mo-99 production through fission based LEU/LEU technology,” J. Radioanal. Nucl. Chem. 305, 912.Google Scholar
Wolterbeek, B., Kloosterman, J. L., Lathouwers, D., Rohde, M., Winkelman, A., Frima, L., and Wols, F. (2014). “What is wise in the production of 99Mo? A comparison of eight possible production routes,” J. Radioanal. Nucl. Chem. 302, 773779.Google Scholar
Supplementary material: File

Reid et al. supplementary material

Reid et al. supplementary material 1

Download Reid et al. supplementary material(File)
File 2 KB
Supplementary material: File

Reid et al. supplementary material

Reid et al. supplementary material 2

Download Reid et al. supplementary material(File)
File 2 KB
Supplementary material: File

Reid et al. supplementary material

Reid et al. supplementary material 3

Download Reid et al. supplementary material(File)
File 520.4 KB
Supplementary material: File

Reid et al. supplementary material

Reid et al. supplementary material 4

Download Reid et al. supplementary material(File)
File 61.3 KB