Skip to main content Accessibility help

The crystal structure of MoO2(O2)H2O

  • Joel W. Reid (a1), James A. Kaduk (a2) and Lidia Matei (a3)


The crystal structure of MoO2(O2)H2O has been solved by analogy with the WO2(O2)H2O structure and refined with synchrotron powder diffraction data obtained from beamline 08B1-1 at the Canadian Light Source. Rietveld refinement, performed with the software package GSAS, yielded monoclinic lattice parameters of a = 12.0417(4) Å, b = 3.87003(14) Å, c = 7.38390(24) Å, and β = 78.0843(11)° (Z = 4, space group P21/n). The structure is composed of double zigzag molybdate chains running parallel to the b-axis. The Rietveld refined structure was compared with density functional theory (DFT) calculations performed with CRYSTAL14, and show strong agreement with the DFT optimized structure.


Corresponding author

a) Author to whom correspondence should be addressed. Electronic mail:


Hide All
Banerjee, S., Pillai, M. R. A., and Ramamoorthy, N. (2001). “Evolution of Tc-99 m in diagnostic radiopharmaceuticals,” Semin. Nucl. Med. 31, 260277.
Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model (Oxford University Press, New York).
Chattopadhyay, S., Das, S. S., and Barua, L. (2010), “A simple and rapid technique for recovery of 99mTc from low specific activity (n,γ)99Mo based on solid–liquid extraction and column chromatography methodologies,” Nucl. Med. Biol. 37, 1720.
Cora, F., Patel, A., Harrison, N. M., Roetti, C., and Catlow, C. R. A. (1997). “An ab-initio Hartree-Fock study of alpha-MoO3 ,” J. Mater. Chem. 7, 959967.
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D'Arco, P., Noel, Y., Causa, M., Rerat, M., and Kirtman, B. (2014). “CRYSTAL14: a program for the Ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114, 12871313.
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr. 27, 892900.
Fodje, M., Grochulski, P., Janzen, K., Labiuk, S., Gorin, J., and Berg, R. (2014). “08B1-1: an automated beamline for macromolecular crystallography experiments at the Canadian Light Source,” J. Synchrotron Radiat. 21, 633637.
Galea, R., Ross, C., and Wells, R. G. (2014). “Reduce, reuse and recycle: a green solution to Canada's medical isotope shortage,” Appl. Radiat. Isot. 87, 148151.
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals – the case of urea,” J. Chem. Phys. 101, 1068610696.
Hellenbrandt, M. (2004). “The Inorganic Crystal Structure Database (ICSD) – present and future,” Crystallogr. Rev. 10, 1722.
Hoedl, S. A. and Updegraff, W. D. (2015). “The production of medical isotopes without nuclear reactors or uranium enrichment,” Sci. Glob. Sec. 23, 121153.
ICDD (2016), PDF-4+ 2016 (Database). International Centre for Diffraction Data, edited by Dr. Soorya Kabekkodu (Newtown Square, PA, USA).
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Report No. LAUR 86-748). Los Alamos, NM: Los Alamos National Laboratory.
McAlister, D. R. and Horwitz, E. P. (2009). “Automated two column generator system for medical radionuclides,” Appl. Radiat. Isot. 67, 19851991.
Momma, K. and Izumi, F. (2011). “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr. 44, 12721276.
Pecquenard, B., Castro-Garcia, S., Livage, J., Zavalij, P. Y., Whittingham, M. S., and Thouvenot, R. (1998). “Structure of hydrated tungsten peroxides [WO2(O2)H2O]·nH2O,” Chem. Mater. 10, 18821888.
Reid, J. W., Kaduk, J. A., and Olson, J. A. (2017). “The crystal structure of Na(NH4)Mo3O10·H2O,” Powder Diffr. 32, 140147.
Sasaki, S. (1989). Numerical Tables of Anomalous Scattering Factors Calculated by the Cromer and Lieberman's Method (KEK–88-14). Japan.
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. 32, 281289.
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). Rietveld refinement of Debye-Scherrer synchrotron X-ray data from A1203 ,” J. Appl. Crystallogr. 20, 7983.
Tkac, P and Vandergrift, G. F. (2016). “Recycling of enriched Mo targets for economic production of 99Mo/99mTc medical isotope without use of enriched uranium,” J. Radioanal. Nucl. Chem. 308, 205212.
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.
Toby, B. H. and Von Dreele, R. B. (2013). “GSAS II: the genesis of a modern open-source all-purpose crystallography software package,” J. Appl. Crystallogr. 46, 544549.
Van Noorden, R. (2013). “The medical testing crisis,” Nature 504, 202204.
Von Dreele, R. (1997). “Quantitative texture analysis by Rietveld refinement,” J. Appl. Crystallogr. 30, 517525.
Wolterbeek, B., Kloosterman, J. L., Lathouwers, D., Rohde, M, Winkelman, A., Frima, L., and Wols, F. (2014). “What is wise in the production of 99Mo? A comparison of eight possible production routes,” J. Radioanal. Nucl. Chem. 302, 773779.


Type Description Title
Supplementary materials

Reid et al. supplementary material
Reid et al. supplementary material 1

 Unknown (943 KB)
943 KB

The crystal structure of MoO2(O2)H2O

  • Joel W. Reid (a1), James A. Kaduk (a2) and Lidia Matei (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed