Skip to main content Accessibility help
×
Home

Crystal structure of minocycline hydrochloride dihydrate form A, C23H28N3O7Cl (H2O)2

  • Austin M. Wheatley (a1), James A. Kaduk (a1) (a2), Amy M. Gindhart (a3) and Thomas N. Blanton (a3)

Abstract

The crystal structure of minocycline hydrochloride dihydrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Minocycline hydrochloride dihydrate crystallizes in space group P212121 (#19) with a = 7.40772(1), b = 14.44924(3), c = 22.33329(4) Å, V = 2390.465(12) Å3, and Z = 4. The minocycline cation is a zwitterion: both dimethylamino groups are protonated and one hydroxyl group is ionized. A potential ambiguity in the orientation of the amide group was resolved by considering Rietveld refinement residuals and displacement coefficients, as well as DFT energies. The crystal structure is dominated by hydrogen bonds. Both water molecules and a hydroxyl group act as donors to the chloride anion. Both protonated dimethyl amine groups act as donors to the ionized hydroxyl group. Several intramolecular O–H···O hydrogen groups help determine the conformation of the cation. The powder pattern is included in the Powder Diffraction File™ as entry 00-066-1606.

Copyright

Corresponding author

a)Author to whom correspondence should be addressed. Electronic mail: kaduk@polycrystallography.com

References

Hide All
Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E. (2000). “The protein data bank,” Nucleic Acids Res. 28, 235242.
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.
Dassault Systèmes (2016). Materials Studio 2017R2 (BIOVIA, San Diego CA).
Donnay, J. D. H. and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Am. Mineral. 22, 446447.
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D-Arco, P., Noël, Y., Causà, M., and Kirtman, B. (2014). Int. J. Quantum Chem. 114, 12871317.
Favre-Nicolin, V. and Černý, R. (2002). FOX, “free objects for crystallography: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.
Fawcett, T. G., Kabekkodu, S. N., Blanton, J. R., and Blanton, T. N. (2017). “Chemical analysis by diffraction: the powder diffraction file™,” Powder Diffr. 32(2), 6371.
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr. 27(6), 892900.
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals – the case of urea,” J. Chem. Phys. 101, 1068610696.
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge structural database,” Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 72, 171179.
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chem. Acta 44, 129138.
Kaduk, J. A. (2002). “Use of the inorganic crystal structure database as a problem solving tool”, Acta Crystallogr. Sect. B: Struct. Sci. 58, 370379.
Kaduk, J. A., Crowder, C. E., Zhong, K., Fawcett, T. G., and Suchomel, M. R. (2014). “Crystal structure of atomoxetine hydrochloride (Strattera), C17H22NOCl,” Powder Diffr. 29(3), 269273.
Kresse, G. and Furthmüller, J. (1996). “Efficiency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 1550.
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System, (GSAS), (Los Alamos National Laboratory Report LAUR 86-784).
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchroton. Rad. 15(5), 427432.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). “Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.
Mendes, Z., Antunes, J. R., Marto, S., and Heggie, W. (2010). “Crystalline minocycline base and processes for its preparation,” United States Patent Application 2010/0286417.
Peintinger, M. F., Vilela Oliveira, D., and Bredow, T. (2013). “Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations,” J. Comput. Chem. 34, 451459.
Rammohan, A. and Kaduk, J. A. (2018). “Crystal structures of alkali metal (Group 1) citrate salts,” Acta Crystallogr. Sect. B 74, 239252.
Rodrigues, M. A., Tiago, J. M., Padrela, L., Matos, H. A., Nunes, T. G., Pinheiro, L., Almeida, A. J., and Gomes de Azavedo, E. (2014). “New thermoresistant polymorph from CO2 recrystallization of minocycline hydrochloride,” Pharm. Res. 31, 31363149.
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. 32, 281289.
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge structural database data,” J. Appl. Crystallogr. 44, 882886.
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr. 20(2), 7983.
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., and Spackman, M. A. (2017). CrystalExplorer17 (University of Western Australia): http://hirshfeldsurface.net.
van de Streek, J. and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. Mater. 70(6), 10201032.
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results,” Rev. Sci. Inst. 79, 085105.
Wavefunction, Inc. (2017). Spartan ‘16 Version 2.0.1, Wavefunction Inc., 18401 Von Karman Ave., Suite 370, Irvine CA 92612.
Wheatley, A. M. and Kaduk, J. A. (2018). “Crystal structures of ammonium citrates,” submitted to Powder Diffraction.
Xiurong, H., Jianming, G., and Linschen, C. (2012). “Minocycline hydrochloride hydrate crystal forms and preparation method thereof,” Chinese Patent CN101693669B.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Wheatley et al. supplementary material
Wheatley et al. supplementary material 1

 Unknown (408 KB)
408 KB

Crystal structure of minocycline hydrochloride dihydrate form A, C23H28N3O7Cl (H2O)2

  • Austin M. Wheatley (a1), James A. Kaduk (a1) (a2), Amy M. Gindhart (a3) and Thomas N. Blanton (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed