Skip to main content Accessibility help
×
Home

Crystal structure of metolazone, C16H16ClN3O3S

  • James A. Kaduk (a1) (a2), Amy M. Gindhart (a3) and Thomas N. Blanton (a3)

Abstract

The crystal structure of metolazone has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Metolazone crystallizes in space group P-1 (#2) with a = 8.1976(5), b = 14.4615(69), c = 16.0993(86) Å, α = 115.009(18), β = 90.096(7), γ = 106.264(4)°, V = 1644.52(9) Å3, and Z = 4. The broad (02-1) peak at 3.42° 2θ indicates stacking faults along this direction. The crystal structure consists of alternating polar and hydrocarbon layers parallel to the ac-plane. Only one of the sulfonamide groups acts as a hydrogen bond donor. Both ring nitrogen atoms act as hydrogen bond donors, but one forms an N–H···N hydrogen bond, while the other participates in an N–H···O bond. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™, to replace entry 00-066-1624.

Copyright

Corresponding author

a)Author to whom correspondence should be addressed. Electronic mail: kaduk@polycrystallography.com

References

Hide All
Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.
Bravais, A. (1866). Etudes Cristallographiques (Gauthier Villars, Paris).
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Sci. 44, 21332144.
Burger, A. (1975). “Dissolution and polymorphism of metolazone,” Arzneimittelforschung. 25, 2427.
Dassault Systèmes (2019). Materials Studio 2019R1 (BIOVIA, San Diego, CA).
Donnay, J. D. H., and Harker, D. (1937). “A new law of crystal morphology extending the law of Bravais,” Am. Mineral. 22, 446447.
Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D-Arco, P., Noël, Y., Causà, M., and Kirtman, B. (2014). “CRYSTAL14: a program for the ab initio investigation of crystalline solids,” Int. J. Quantum Chem. 114, 12871317.
Favre-Nicolin, V., and Černý, R. (2002). “FOX, “Free objects for crystallography: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.
Fawcett, T. G., Kabekkodu, S. N., Blanton, J. R., and Blanton, T. N. (2017). “Chemical analysis by diffraction: the Powder Diffraction File™,” Powder Diffr. 32(2), 6371.
Friedel, G. (1907). “Etudes sur la loi de Bravais,” Bull. Soc. Fr. Mineral. 30, 326455.
Gatti, C., Saunders, V. R., and Roetti, C. (1994). “Crystal-field effects on the topological properties of the electron-density in molecular crystals-the case of urea,” J. Chem. Phys. 101, 1068610696.
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge Structural Database,” Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 72, 171179.
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chem. Acta. 44, 129138.
Kaduk, J. A., Crowder, C. E., Zhong, K., Fawcett, T. G., and Suchomel, M. R. (2014). “Crystal structure of atomoxetine hydrochloride (Strattera), C17H22NOCl,” Powder Diffr. 29(3), 269273.
Kresse, G., and Furthmüller, J. (1996). “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 1550.
Kuhnert-Brandstätter, M., and Burger, A. (1975). “Beitrag zur thermischen analyse optischer antipoden: N-benzoyl-3-methoxy-4-hydroxy-phenylalanin und metolazon,” Microchim. Acta. 63, 549561.
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synch. Rad. 15(5), 427432.
Louër, D., and Boultif, A. (2014). “Some further considerations in powder diffraction pattern indexing with the dichotomy method,” Powder Diffr. 29, S7S12.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P. A. (2008). “Mercury CSD 2.0–new features for the visualization and investigation of crystal structures,” J. Appl. Crystallogr. 41, 466470.
Materials Design (2016). MedeA 2.20.4 (Materials Design Inc., Angel Fire, NM).
MDI (2018). Jade 9.8 (Materials Data Inc., Livermore, CA).
Peintinger, M. F., Vilela Oliveira, D., and Bredow, T. (2013). “Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations,” J. Comput. Chem. 34, 451459.
Shetty, B. V. (1967). Tetrahydro-halo-sulfamyl-quinazolinones. US Patent US3458513A.
Silk Scientific (2013). UN-SCAN-IT 7.0 (Silk Scientific Corporation, Orem, UT).
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A. (2011). “New software for statistical analysis of Cambridge Structural Database data,” J. Appl. Crystallogr. 44, 882886.
Toby, B. H., and Von Dreele, R. B. (2013). “GSAS II: the genesis of a modern open source all purpose crystallography software package,” J. Appl. Crystallogr. 46, 544549.
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., and Spackman, M. A. (2017). CrystalExplorer17 (University of Western Australia). http://hirshfeldsurface.net.
van de Streek, J., and Neumann, M. A. (2014). “Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D),” Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 70(6), 10201032.
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008). “A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results,” Rev. Sci. Instrum. 79, 085105.
Wavefunction, Inc (2018). Spartan ’18 Version 1.2.0 (Wavefunction Inc, Irvine, CA, USA).
Wheatley, A. M., and Kaduk, J. A. (2019). “Crystal structures of ammonium citrates,” Powder Diffr. 34, 3543.
Zhang, Y., Hui, X., and Wang, R. (2014). “Study on polymorphism of metolazone tablets,” Northwest Pharm. J. 29, 514516.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Kaduk et al. supplementary material
Kaduk et al. supplementary material 1

 Unknown (2.9 MB)
2.9 MB
UNKNOWN
Supplementary materials

Kaduk et al. supplementary material
Kaduk et al. supplementary material 2

 Unknown (9 KB)
9 KB

Crystal structure of metolazone, C16H16ClN3O3S

  • James A. Kaduk (a1) (a2), Amy M. Gindhart (a3) and Thomas N. Blanton (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed