Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-21T16:57:09.580Z Has data issue: false hasContentIssue false

Crystal structure determination of the silver carboxylate dimer [Ag(O2C22H43)]2, silver behenate, using powder X-ray diffraction methods

Published online by Cambridge University Press:  05 March 2012

Thomas N. Blanton*
Affiliation:
Eastman Kodak Company, Research Laboratories, Rochester, New York 14650-2106
Manju Rajeswaran
Affiliation:
Eastman Kodak Company, Research Laboratories, Rochester, New York 14650-2106
Peter W. Stephens
Affiliation:
Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800
David R. Whitcomb
Affiliation:
Carestream Health, 1 Imation Way, Oakdale, Minnesota 55128
Scott T. Misture
Affiliation:
Alfred University, New York State College of Ceramics, Alfred, New York 14802
James A. Kaduk
Affiliation:
INEOS Technologies, Analytical Science Research Services, Naperville Illinois 60563
*
a)Author to whom correspondence should be addressed. Electronic mail: thomas.blanton@kodak.com

Abstract

High-resolution powder X-ray diffraction has been used to determine the crystal structure of silver behenate, [Ag(O2C(CH2)20CH3]2. Using CASTEP density functional plane wave pseudopotential techniques to obtain an optimized structural model, Rietveld refinement of the structure gives Rwp = 8.66%. The unit cell is triclinic, space group P1, with cell dimensions of a = 4.1769(2) Å, b = 4.7218(2) Å, c = 58.3385(1) Å, α = 89.440(3)°, β = 89.634(3)°, γ = 75.854(1)°. The structure is characterized by an 8-membered ring dimer of Ag atoms and carboxyl groups with a fully extended all-trans configuration of the alkyl side chains. The dimers are joined by four-membered Ag-O rings creating a polymeric network, giving rise to one-dimensional chains along the b-axis. This structure is supported by EXAFS measurements of the local structure around the silver atoms and IR measurements.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Accelrys (2002). REFLEX PLUS Materials Studio, version 2.2 (Computer Software) Accelrys, Inc., CA.Google Scholar
Blanton, T. N., Huang, T. C., Hubbard, C. R., Robie, S. B., Louer, D., Gobel, H. E., Will, G., Gilles, R., and Raftery, T. (1995). “JCPDS-International Centre for Diffraction Data Round Robin Study of Silver Behenate. A possible low-angle X-ray diffraction calibration standard,” Powder Diffr. 10(2), 9195.CrossRefGoogle Scholar
Blanton, T., Lelental, M., Zdzieszynski, S., and Misture, S. (2002). “In situ high-temperature study of silver behenate reduction to silver metal using synchrotron radiation,” Adv. X-ray Anal. 45, 371376.Google Scholar
Blanton, T. N., Zdzieszynski, S., Nicholas, M., and Misture, S. (2005). “An in situ high-temperature X-ray diffraction study of phase transformations in silver behenate,” Powder Diffr. 20(2), 9496.10.1154/1.1913713CrossRefGoogle Scholar
Blanton, T. N., Whitcomb, D. R., and Misture, S. T. (2007). “An EXAFS study of photographic development in thermographic films,” Powder Diffr. 22(2), 122125.10.1154/1.2737461CrossRefGoogle Scholar
Binnemans, K., Van Deun, R., Thijs, B., Vanwelkenhuysen, I., and Geuens, I. (2004). “Structure and mesomorphism of silver alkanoates,” Chem. Mater. 16(10), 20212027.10.1021/cm0345570CrossRefGoogle Scholar
Bokhonov, B., Burleva, L., Usanov, Y., and Whitcomb, D. R. (2001). “The formation of nano-sized silver particles during thermal and photochemical decomposition of silver carboxylates,” J. Imag. Sci. Tech. 45(3), 259266.CrossRefGoogle Scholar
Bokhonov, B. B., Burleva, L. P., Sidelnikov, A. A., Sharafutdinov, M. R., Tolochko, B. P., and Whitcomb, D. R. (2003). “Thermal and mechanochemical initiated phase transformations in silver carboxylates,” J. Imag. Sci. Tech. 47(2), 8999.CrossRefGoogle Scholar
Bokhonov, B. B., Sharafutdinov, M. R., Tolochko, B. P., Burleva, L. P., and Whitcomb, D. R. (2005). “In situ X-ray investigation of metallic silver phase formation from silver myristate thermal decomposition and its reduction in photothermographic films,” J. Imag. Sci. Tech. 49(4), 389393.CrossRefGoogle Scholar
Boultif, A. and Louer, D. (1991). “Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method,” J. Appl. Crystallogr. 24(6), 987993.10.1107/S0021889891006441CrossRefGoogle Scholar
Bruker AXS (2008). TOPAS 4.0 (Computer Software), Bruker AXS Inc., 5465 East Cheryl Parkway, Madison, WI.Google Scholar
Bryan, T.(1969). “Preparation of silver salts of organic carboxylic acids,” U.S. Patent 3,458,544.Google Scholar
Chen, X. M. and Mak, T. C. W. (1991a). “Metal-betaine interactions. Part 3. Crystal structures of polymeric diaquabis(betaine)disilver(I) dinitrate and bis(pyridine betaine)disilver(I) diperchlorate,” J. Chem. Soc. Dalton Trans. 5, 12191222.10.1039/dt9910001219CrossRefGoogle Scholar
Chen, X. M. and Mak, T. C. W. (1991b). “Metal-betaine interactions - VIII. Crystal structure of catena-(pyridine betaine)(nitrato)silver(I), [Ag(C5H5NCH2COO)(NO3)]n,” Polyhedron 10(14),17231726.10.1016/S0277-5387(00)83790-0CrossRefGoogle Scholar
Clark, S. J., Segal, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. J., Refson, K., and Payne, M. C. (2005). “First principles methods using CASTEP,” Z. Kristall. 220(5–6), 567570.10.1524/zkri.220.5.567.65075CrossRefGoogle Scholar
Coelho, A. A. (2007). “A charge-flipping algorithm incorporating the tangent formula for solving difficult structures,” Acta Crystallogr., Sect. A: Found. Crystallogr. 63(5), 400406.10.1107/S0108767307036112CrossRefGoogle ScholarPubMed
Cowdery-Corvan, P. J. and Whitcomb, D. R. (2002). “Photothermographic and thermographic imaging materials,” in Handbook of Imaging Materials, 2nd ed., edited by Diamond, A. (Marcel Dekker Inc., New York), pp. 473529.Google Scholar
David, W. I. F., Shankland, K., and Shankland, N. (1998). “Routine determination of molecular crystal structures from powder diffraction data,” Chem. Commun. (Cambridge) 8, 931932.10.1039/a800855hCrossRefGoogle Scholar
Engel, G. E., Wilke, S., Konig, O., Harris, K. D. M., and Leusen, F. J. J. (1999). “PowderSolve–A complete package for crystal structure solution from powder diffraction patterns,” J. Appl. Crystallogr. 32(6), 11691179.10.1107/S0021889899009930CrossRefGoogle Scholar
Gilles, R. and Wiedenmann, U. (1998). “Silver behenate powder as a low-angle calibration standard for small-angle neutron scattering,” J. Appl. Crystallogr. 31(6), 957959.10.1107/S0021889898004440CrossRefGoogle Scholar
Huang, T. C., Toraya, H., Blanton, T. N., and Wu, Y. (1993). “X-ray powder diffraction analysis of silver behenate, a possible low-angle diffraction standard,” J. Appl. Crystallogr. 26(2), 180184.10.1107/S0021889892009762CrossRefGoogle Scholar
Jaber, F., Charbonnier, F., Petit-Ramel, M., and Faure, R. (1996). “A new silver(I) carboxylate chelate type: A six-membered ring in the N-oxide-picolinate,” Eur. J. Solid State Inorg. Chem. 33, 429440.Google Scholar
Klosterboer, D. H. (1989). “Thermally processed silver systems,” in Imaging Processes and Materials, Neblette’s 8th ed., edited by Sturge, J., Walworth, V., and Shepp, A. (Van Nostrand-Reinhold, New York), pp. 279291.Google Scholar
Lee, S. J., Han, S. W., Choi, H. J., and Kim, K. (2002). “Structure and thermal behavior of a layered silver carboxylate,” J. Phys. Chem. B 106, 28922900.10.1021/jp0132937CrossRefGoogle Scholar
Liu, X., Lu, S., Cao, W., and Zhang, J. (2006). “Preparation, characterization and thermal behavior of silver behenate crystals,” Chin. Sci. Bull. 51(5), 515520.10.1007/s11434-006-0515-8CrossRefGoogle Scholar
MDI (2005). JADE 7.0 (Computer Software), Materials Data Inc., 1224 Concannon Drive, Livermore, CA.Google Scholar
Mehrotra, R. C. and Bohra, R. (1983). Metal Carboxylates (Academic Press, United Kingdom), pp. 293295.Google Scholar
Olson, L. P., Whitcomb, D. R., Rajeswaran, M., and Stwertka, B. J. (2006). “The role of the Ag-Ag bond in the formation of silver nano-particles during the thermally induced reduction of silver carboxylates,” Chem. Mater. 18(6), 16671674.10.1021/cm052657vCrossRefGoogle Scholar
Pagola, S. and Stephens, P.W. (2010). “PSSP, a computer program for the crystal structure solution of molecular materials from X-ray powder diffraction data,” J. Appl. Crystallogr. 43(2), 370376.10.1107/S0021889810005509/hx5102sup1.cifCrossRefGoogle Scholar
Pawley, G. S. (1991). “Unit-cell refinement from powder diffraction scans,” J. Appl. Crystallogr. 14(6), 357361.10.1107/S0021889881009618CrossRefGoogle Scholar
Penfound, K.(1984). “Spectrally sensitized photothermographic materials and preparation thereof,” U.S. Patent 4,476,220.Google Scholar
Ravel, B. (2006). ATHENA 08.050 (Computer Software), Argonne National Laboratory, Argonne, IL.Google Scholar
Ressle, T. (2003). WINXAS 3.0 (Computer Software), Krabbenkamp 5D, D-21465 Reinbek b. Hamburg, Germany.Google Scholar
Rietveld, H. M. (1967). “Line profiles of neutron powder diffraction peaks for structure refinement,” Acta Crystallogr. 22(1), 151152.10.1107/S0365110X67000234CrossRefGoogle Scholar
Sahyun, M. R. V. (2009). “An introduction to photothermography,” http:/www/imaging.org/resources/web_tutorials/photothermography.cfm.Google Scholar
Simons, M.(1974). “Preparation of a silver salt of a fatty acid,” U.S. Patent 3,839,049.Google Scholar
Smith, G., Sagatys, D. S., Dahlgren, C., Lynch, D. E., Bott, R. C., Byriel, K. A., and Kennard, C. H. L. (1995). “Structures of the silver(I) complexes with maleic and fumaric acids: silver(I) hydrogen maleate, silver(I) maleate and silver(I) fumarate,” Z. Kristallogr. 210(1), 4448.10.1524/zkri.1995.210.1.44CrossRefGoogle Scholar
Strijckers, H. L. (2003). “Image formation mechanisms in photothermographic silver imaging media,” J. Imag. Sci. Technol. 47(2), 100106.CrossRefGoogle Scholar
Tolochko, B. P., Chernov, S. V., Nikitenko, S. G., and Whitcomb, D. R. (1998). “EXAFS determination of the structure of silver stearate, [Ag(O2C(CH2)16CH3]2, and the effect of temperature on the silver coordination sphere,” Nucl. Instrum. Meth. Phys. Res. (A) 405(2,3), 428434.10.1016/S0168-9002(97)01044-9CrossRefGoogle Scholar
Vand, V., Aitken, A., and Campbell, R. K. (1949). “Crystal structure of silver salts of fatty acids,” Acta Crystallogr. 2, 398403.10.1107/S0365110X49001041CrossRefGoogle Scholar
Werner, P. E., Eriksson, L, and Westdahl, M. (1985). “TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries,” J. Appl. Crystallogr. 18, 367370.10.1107/S0021889885010512CrossRefGoogle Scholar
Whitcomb, D. R. and Rajeswaran, M. (2003). “Coordination chemistry of photothermographic imaging materials: III,” J. Imag. Sci. Tech. 47(2), 107114.CrossRefGoogle Scholar
Whitcomb, D. R. and Rajeswaran, M. (2006). “Designing silver carboxylate polymers: crystal structures of silver-acetyl-benzoate and silver-1,2-benzenedicarboxylate monomethyl ester,” Polyhedron 25(8), 17471752.10.1016/j.poly.2005.11.020CrossRefGoogle Scholar
Wu, D. D. and Mak, T. C. W. (1995). “Building two-dimensional silver (I) co-ordination polymers with dicarboxylate-like ligands: Synthesis and crystal structures of polymeric complexes of silver nitrate and perchlorate with flexible double betaines,” J. Chem. Soc. Dalton Trans. 16, 26712678.10.1039/dt9950002671CrossRefGoogle Scholar
Yu, G. S., Li, H. W., Hollander, F., Snyder, R. G., and Strauss, H. L. (1999). “Comparison of the structures of ammonium myristate, palmitate & stearate by X-ray diffraction, infrared spectroscopy, and infrared hole burning,” J. Phys. Chem. 103, 1046110468.CrossRefGoogle Scholar