Skip to main content Accessibility help

Crystal structure and local order of nanocrystalline zirconia-based solid solutions

  • I. O. Fábregas (a1), D. G. Lamas (a1), L. M. Acuña (a1), N. E. Walsöe de Reca (a1), A. F. Craievich (a2), M. C. A. Fantini (a2) and R. J. Prado (a3)...


Crystal and local structures (long- and short-range order, respectively) of four nanocrystalline zirconia-based solid solutions—ZrO2-6 and 16 mol % CaO and ZrO2-2.8 and 12 mol % Y2O3—synthesized by a pH-controlled nitrate-glycine gel-combustion process were studied. These materials were characterized by synchrotron X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents (6 and 2.8 mol %, respectively) exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents (16 and 12 mol %, respectively) have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere.



Hide All
Ankudinov, A.L., Ravel, B., Rehr, J.J., and Conradson, S.D. (1998). “Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure,” Phys. Rev. BPRBMDO 58, 75657576. prb, PRBMDO
Chadwick, A.V., Mountjoy, G., Nield, V.M., Poplett, I.J. F., Smith, M.E., Strange, J.H., and Tucker, M.G. (2001). “Solid-state NMR and X-ray studies of the structural evolution of nanocrystalline zirconia,” Chem. Mater.CMATEX 13, 12191229. cma, CMATEX
Deportes, C., Duclot, M., Fabry, P., Fouletier, J., Hammou, A., Kleitz, M., Siebert, E., and Souquet, J.L. (1994). Electrochimie des Solides (Presses Universitaires de Grenoble, Grenoble, France).
Durrani, S.K., Akhtar, M., Ahmad, M., and Hussain, M.A. (2006). “Synthesis and characterization of low density calcia stabilized zirconia ceramic for high temperature furnace application,” Mater. Chem. Phys.MCHPDR 100, 324328. mcp, MCHPDR
Fábregas, I.O., Fuentes, R.O., Lamas, D.G., Fernández de Rapp, M.E., Walsöe de Reca, N.E., Fantini, M.C. A., Craievich, A.F., Prado, R.J., Millen, R.P., and Temperini, M.L. A. (2006). “Local structure of the metal-oxygen bond in compositionally homogeneous, nanocrystalline zirconia-ceria solid solutions synthesized by a gel-combustion process,” J. Phys.: Condens. MatterJCOMEL 18, 78637881. jcz, JCOMEL
Fábregas, I.O., Lamas, D.G., Acuña, L.M., Fantini, M.C. A., Craievich, A.F., and Prado, R.J. (2008). “Crystal structure and local atomic order of nanocrystalline ZrO2–Y2O3 solid solutions II: Extended X-ray absorption fine structure spectroscopy study,” J. Phys.: Condens. Matter (in preparation).
Fabris, S., Paxton, A.T., and Finnis, M.W. (2002). “A stabilization mechanism of zirconia based on oxygen vacancies only,” Acta Mater.ACMAFD 50, 51715178. acz, ACMAFD
Ferreira, F.F., Granado, E., Carvalho, W. Jr., Kycia, S.W., Bruno, D., and Droppa, R. Jr. (2006). “X-ray powder diffraction beamline at D10B of LNLS: application to the Ba2FeReO6 double perovskite,” J. Synchrotron Radiat.JSYRES 13, 4653. jsy, JSYRES
Fornasiero, P., Fonda, E., Monte, R.D., Vlaic, G., Kašpar, J., and Graziani, M. (1999). “Relationships between structural/textural properties and redox behavior in Ce0.6Zr0.4O2 mixed oxides,” J. Catal.JCTLA5 187, 177185. jtl, JCTLA5
Giacovazzo, C., (Ed.) (1992). Fundamentals of Crystallography (International Union of Crystallography Texts on Crystallography 2) (Oxford U. P., New York), p. 148.
Hellwig, Ch., Streit, M., Blair, P., Tverberg, T., Klaassen, F.C., Schram, R.P. C., Vettraino, F., and Yamashita, T. (2006). “Inert matrix fuel behaviour in test irradiations,” J. Nucl. Mater.JNUMAM 352, 291299. jnu, JNUMAM
Ho, S.-M. (1982). “On the structural chemistry of zirconium oxide,” Mater. Sci. Eng.MSCEAA 54, 2329. mse, MSCEAA
Horiuchi, H., Schultz, A.J., Leung, P.C. W., and Williams, J.M. (1984). “Time-of-flight neutron diffraction study of a single crystal of yttria-stabilized zirconia, Zr(Y)O1.862, at high temperature and in an applied electric field,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK 40, 367372. acl, ASBSDK
Juárez, R.E., Lamas, D.G., Lascalea, G.E., and Walsöe de Reca, N.E. (1999). “Synthesis and structural properties of zirconia-based nanocrystalline powders and fine-grained ceramics,” Defect Diffus. ForumDDAFE7 177–178, 126. ddf, DDAFE7
Khan, M.S., Islam, M.S., and Bates, D.R. (1998). “Cation doping and oxygen diffusion in zirconia: a combined atomistic simulation and molecular dynamics study,” J. Mater. Chem.JMACEP 8, 22992307. jtc, JMACEP
Klug, H.P. and Alexander, L.E. (1974). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York), 2nd ed., p. 618.
Lamas, D.G., Fuentes, R.O., Fábregas, I.O., Fernández de Rapp, M.E., Lascalea, G.E., Casanova, J.R., Walsöe de Reca, N.E., and Craievich, A.F. (2005). “Synchrotron X-ray diffraction study of the tetragonal-cubic phase boundary of nanocrystalline ZrO2–CeO2 synthesized by a gel-combustion process,” J. Appl. Crystallogr.JACGAR 38, 867873. acr, JACGAR
Lamas, D.G., Juárez, R.E., Lascalea, G.E., and Walsöe De Reca, N.E. (2001). “Synthesis of compositionally homogeneous, nanocrystalline ZrO2-35 mol% CeO2 powders by gel-combustion,” J. Mater. Sci. Lett.JMSLD5 20, 14471449. jml, JMSLD5
Lamas, D.G., Lascalea, G.E., Juárez, R.E., Djurado, E., Pérez, L., and Walsöe de Reca, N.E. (2003). “Metastable forms of the tetragonal phase in compositionally homogeneous, nanocrystalline zirconia-ceria powders synthesised by gel-combustion,” J. Mater. Chem.JMACEP 13, 904910. jtc, JMACEP
Lamas, D.G. and Walsöe de Reca, N.E. (2000). “X-ray diffraction study of compositionally homogeneous, nanocrystalline yttria-doped zirconia powders,” J. Mater. Sci.JMTSAS 35, 55635567. jmt, JMTSAS
Lascalea, G.E., Lamas, D.G., Pérez, L., Cabanillas, E.D., and Walsöe de Reca, N.E. (2004). “Synthesis of ZrO2-15 mol% CeO2 nanopowders by a pH-controlled nitrate-glycine process,” Mater. Lett.MLETDJ 58, 24562460. mal, MLETDJ
Lee, W.E. and Rainforth, W.M. (1994). Ceramic Microstructures: Property Control by Processing (Chapman and Hall, London), p. 317.
Li, P., Chen, I.-W., and Penner-Hahn, J.E. (1993). “X-ray-absorption studies of zirconia polymorphs. II. Effect of Y2O3 dopant on ZrO2 structure,” Phys. Rev. BPRBMDO 48, 1007410081. prb, PRBMDO
Mastelaro, V.R., Briois, V., de Souza, D.P. F., and Silva, C.L. (2003). “Structural studies of a ZrO2–CeO2 doped system,” J. Eur. Ceram. Soc.JECSER 23, 273282. jeu, JECSER
Morinaga, M., Cohen, J.B., and Faber, J. Jr. (1980). “X-ray diffraction study of Zr(Ca,Y)O2−x. II. Local ionic arrangements,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.ACACBN 36, 520530. aca, ACACBN
Newville, M., Ravel, B., Haskel, D., Rehr, J.J., Stern, E.A., and Yacoby, Y. (1995). “Analysis of multiple-scattering XAFS data using theoretical standards,” Physica BPHYBE3 208–209, 154156. phb, PHYBE3
Pattanaik, S., Huffman, G.P., Sahu, S., and Lee, R.J. (2004). “X-ray absorption fine structure spectroscopy and X-ray diffraction study of cementitious materials derived from coal combustion by-products,” Cem. Concr. Res.CCNRAI 34, 12431249. ccn, CCNRAI
Peters, F., Schwarz, K., and Epple, M. (2000). “The structure of bone studied with synchrotron X-ray diffraction, X-ray absorption spectroscopy and thermal analysis,” Thermochim. ActaTHACAS 361, 131138. tha, THACAS
Ressler, T. (1998). “WinXAS: A program for X-ray absorption spectroscopy data analysis under MS-Windows,” J. Synchrotron Radiat.JSYRES 5, 118122. jsy, JSYRES
Rodríguez-Carvajal, J. (1990). “FullProf: A program for Rietveld refinement and pattern matching analysis,” Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, p. 127.
Rush, G.E., Chadwick, A.V., Kosacki, I., and Anderson, H.U. (2000). “An EXAFS study of nanocrystalline yttrium stabilized cubic zirconia films and pure zirconia powders,” J. Phys. Chem. BJPCBFK 104, 9597–6906. bfk, JPCBFK
Silva, V.V. and Lameiras, F.S. (2000). “Synthesis and characterization of composite powders of partially stabilized zirconia and hydroxyapatite,” Mater. Charact.MACHEX 45, 5159. mac, MACHEX
Sowrey, F.E., Skipper, L.J., Pickup, D.M., Drake, K.O., Lin, Z., Smith, M.E., and Newport, R.J. (2004). “Systematic empirical analysis of calcium-oxygen coordination environment by calcium K-edge XANES,” Phys. Chem. Chem. Phys.PPCPFQ 6, 188192. 97v, PPCPFQ
Stapper, G., Bernasconi, M., Nicoloso, N., and Parrinello, M. (1999). “Ab initio study of structural and electronic properties of yttria-stabilized cubic zirconia,” Phys. Rev. BPRBMDO 59, 797810. prb, PRBMDO
Steele, B.C. H. (1996). “Materials for high-temperature fuel cells,” Philos. Trans. R. Soc. London, Ser. APTRMAD 354, 16951710. ptr, PTRMAD
Tolentino, H., Cezar, J.C., Cruz, D.Z., Compagnon-Cailhol, V., Tamura, E., and Martins Alves, M.C. (1998). “Commissioning and first results of the LNLS XAFS beamline,” J. Synchrotron Radiat.JSYRES 5, 521523. jsy, JSYRES
Tommaseo, C.E., and Kersten, D.M. (2002). “Aqueous solubility diagrams for cementitious waste stabilization systems. 3. Mechanism of zinc immobilizaton by calcium silicate hydrate,” Environ. Sci. Technol.ESTHAG 36, 29192925. est, ESTHAG
Trovarelli, A., (Ed.) (2002). Catalysis by Ceria and Related Materials (Imperial College Press, London).
Vlaic, G., Fornasiero, P., Geremia, S., Kašpar, J., and Graziani, M. (1997). “Relationship between the zirconia-promoted reduction in the Rh-loaded Ce0.5Zr0.5O2 mixed oxide and the Zr–O local structure,” J. Catal.JCTLA5 168, 386392. jtl, JCTLA5
Vlaic, G., Monte, R.D., Fornasiero, P., Fonda, E., Kašpar, J., and Graziani, M. (1999). “Redox property-local structure relationships in the Rh-loaded CeO2–ZrO2 mixed oxides,” J. Catal.JCTLA5 182, 378389. jtl, JCTLA5
Yaparpalvi, R., Loyalka, S.K., and Tompson, R.V. Jr. (1994). “Production of spherical ZrO2–Y2O3 and ZnO particles,” J. Biomed. Mater. Res.JBMRBG 28, 10871093. jbg, JBMRBG
Yashima, M., Sasaki, S., Kakihana, M., Yamaguchi, Y., Arashi, H., and Yoshimura, M. (1994). “Oxygen-induced structural change of the tetragonal phase around the tetragonal-cubic phase boundary in ZrO2–YO1.5 solid solutions,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK 50, 663672. acl, ASBSDK
Yashima, M., Kakihana, M., and Yoshimura, M. (1996). “Metastable-stable phase diagrams in the zirconia-containing systems utilized in solid-oxide fuel cell application,” Solid State IonicsSSIOD3 86–88, 11311149. ssi, SSIOD3
Yashima, M., Sasaki, S., and Yamaguchi, Y. (1998). “Internal distortion in ZrO2–CeO2 solid solutions: neutron and high-resolution synchrotron x-ray diffraction study,” Appl. Phys. Lett.APPLAB 72, 182184. apl, APPLAB
Yuren, W., Kunquan, L., Dazhi, W., Zhonghua, W., and Zhengzhi, F. (1994). “The EXAFS study of nanocrystalline zirconia,” J. Phys.: Condens. MatterJCOMEL 6, 633640. jcz, JCOMEL


Crystal structure and local order of nanocrystalline zirconia-based solid solutions

  • I. O. Fábregas (a1), D. G. Lamas (a1), L. M. Acuña (a1), N. E. Walsöe de Reca (a1), A. F. Craievich (a2), M. C. A. Fantini (a2) and R. J. Prado (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed