Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T09:09:29.213Z Has data issue: false hasContentIssue false

Crystal chemistry and X-ray diffraction patterns for Co(NixZn1−x)Nb4O12 (x = 0.2, 0.4, 0.6, 0.8)

Published online by Cambridge University Press:  12 October 2016

G. Liu
Affiliation:
School of Scientific Research, China University of Geosciences, Bejing 100083, People's Republic of China
W. Wong-Ng*
Affiliation:
Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
J. A. Kaduk
Affiliation:
Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616 Department of Physics, North Central College, Naperville, Illinois 60540
*
a)Author to whom correspondence should be addressed. Electronic mail: winnie.wong-ng@nist.gov

Abstract

X-ray reference powder patterns and structures have been determined for a series of cobalt-, nickel- and zinc-containing niobates, Co(NixZn1−x)Nb4O12 (x = 0.2, 0.4, 0.6, 0.8). The Co(NixZn1−x)Nb4O12 series crystallize in the space group of Pbcn, which is of the disordered columbite-type structure (α-PbO2). The lattice parameters range from a = 14.11190(13) to 14.1569(3) Å, b = 5.69965(6) to 5.71209(13) Å, c = 5.03332(5) to 5.03673(11) Å, and V = 404.844(8) to 407.296(17) Å3 from x = 0.8 to 0.2, respectively. Co(NixZn1−x)Nb4O12 contains double zig-zag chains of NbO6 octahedra and single chain of (Ni,Zn,Co)O6 octahedra run parallel to the bc-plane. Within the same chain the NbO6 octahedra share edges, while the adjacent NbO6 chains are joined to each other through common oxygen corners. These double NbO6 chains are further linked together along the [100]-direction through another (Co,Ni,Zn)O6 units, via common oxygen corners. The edge-sharing (Co,Ni,Zn)O6 also forms zig-zag chains along the c-axis. Powder X-ray diffraction patterns of this series of compounds have been submitted to be included in the Powder Diffraction File.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belous, S., Ovchar, O., Jancar, B., and Bezjak, J. (2007). “The effect of non-stoichiometry on the microstructure and microwave dielectric properties of the columbites A2+Nb2O6 ,” J. Eur. Ceram. Soc. 27, 29332936.CrossRefGoogle Scholar
Bordet, P., McHale, A., Santoro, A., and Roth, R. S. (1986). “Powder neutron diffraction study of ZrTiO4, Zr5Ti4O24, and FeNb2O6 ,” J. Solid State Chem. 64, 3046.Google Scholar
Brese, N. E. and O'Keeffe, M. (1991). “Bond-valence parameters for solids,” Acta Crystallogr. B 47, 192197.Google Scholar
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database,” Acta Crystallogr. B 41, 244247.CrossRefGoogle Scholar
Butee, S., Kulkarni, A., Prakash, O., Aiyar, R. P. R. C., George, S., and Sebatian, M. T. (2009). “High Q microwave dielectric ceramics in (Ni1−xZnx)Nb2O6 system,” J. Am. Ceram. Soc. 92, 10471053.Google Scholar
Erdem, M., Ghafouri, S., Ekmekçi, M. K., Mergen, A., and Özen, G. (2014). “Structural and Spectroscopic Properties of Er3+: CdNb2O6 Phosphors,” in Nano-Structures for Optics and Photonics, NATO Science for Peace and Security Series B: Physics and Biophysics, edited by Di Bartolo, B. et al. (Springer Science and Business Media Dordrecht, Netherlands) 2015, pp. 443445.Google Scholar
Filatov, S., Bendeliani, N., Albert, B., Kopf, J., Dyuzeva, T., and Lityagina, L. (2005). “High-pressure synthesis of α-PbO2 and its crystal structure at 293, 203, and 113 K from single crystal diffraction data,” Solid State Sci. 7, 13631368.Google Scholar
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr. 27, 892900.Google Scholar
Grebille, D., Lambert, S., Bouree, F., and Petricek, V. (2004). “Contribution of powder diffraction for structure refinements of aperiodic misfit cobalt oxides,” J. Appl. Crystallogr. 37, 823831.Google Scholar
Guochang, L., Peeraldo Bicelli, L., and Razzini, G. (1991). “Photoelectrochemical characterization of NiNb2O6 ,” Solar Energy Mater. 21, 335346.Google Scholar
Hanawa, T., Shinkawa, K., Ishikawa, M., Miyatani, K., Saito, K., and Kohn, K. (1994). “Anisotropic specific heat of CoNb2O6 ,” Phys. Rev. Jpn. 63, 27062715.Google Scholar
Howard, C. J. (1982). “The approximation of asymmetric neutron powder diffraction peaks by sums of Gaussians,” J. Appl. Crystallogr. 15(6), 615620.Google Scholar
Huang, F., Zhou, Q., Li, L., Huang, X., Xu, D., Li, F., and Cui, T. (2014). “Structural transition of MnNb2O6 under quasi-hydrostatic pressure,” J. Phys. Chem. 118, 1928019286.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Los Alamos National Laboratory Report LAUR 86–748, Los Alamos).Google Scholar
Masset, A. C., Michel, C., Maignan, A., Hervieu, M., Toulemonde, O., Studer, F., Raveau, B., and Hejtmanck, J. (2000). “Misfit-layered cobaltite with an anisotropic giant Magnetoresistance: Ca3Co4O9 ,” Phys. Rev. B 62, 166175.Google Scholar
Mikami, M. and Funahashi, R. (2005). “The effect of element substitution on high-temperature thermoelectric properties of Ca3Co2O6 compounds”, J. Solid State Chem. 178, 16701674.Google Scholar
Mikami, M., Funahashi, R., Yoshimura, M., Mori, Y., and Sasaki, T. (2003). “High-temperature thermoelectric properties of single-crystal Ca3Co2O6 ,” J. Appl. Phys. 94(10), 65796582.CrossRefGoogle Scholar
Minami, H., Itaka, K., Kawaji, H., Wang, Q. J., Koinuma, H. and Lippmaa, M. (2002). “Rapid synthesis and characterization of (Ca1−xBax)3Co4O9 thin films using combinatorial methods,” Appl. Surface Sci. 197, 442447.CrossRefGoogle Scholar
Pagola, S., Carbonio, R. E. (1997). “Crystal structure refinement of MgNb2O6 columbite from neutron powder diffraction data and study of the ternary powder diffraction data and study of the ternary system MgO-Nb2O5–NbO, with evidence of formation of new reduced pseudobrookite Mg5−xNb4+xO15−δ (1.14 ≤ x ≤ 1.60) Phases,” J. Solid State Chem. 134, 7684.Google Scholar
PDF, Powder Diffraction File (2016). Produced by International Centre for Diffraction Data (12 Campus Blvd., Newtown Square, PA, 19073–3273).Google Scholar
Pullar, R. C. (2009). “The synthesis, properties, and applications of columbite niobates (M2+Nb2O6): a critical review,” J. Am. Ceram. Soc., 92(3), 563577.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.Google Scholar
Sarvezuk, P. W. C., Kinast, E. J., Colin, C. V., Cusmäo, M. A., da Cunha, J. B. M., and Isnard, O. (2011). “New investigation of the magnetic structure of CoNb2O6 columbite,” J. Appl. Phys. 109, 07E160.CrossRefGoogle Scholar
Senegas, J., Galy, J. (1972). “Sur les transformations des structures columbite el trirutilke étude du système NiNb2O6-NiF,” J solid State Chem. 5, 481486.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides,” Acta Crystallogr. A32, 751767.CrossRefGoogle Scholar
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening,” J. Appl. Crystallogr., 32, 281289.Google Scholar
Sturdivant, J. H. (1930). “The crystal structure of columbite,” Z. Kristallogr. 75, 66105.Google Scholar
Terasaki, I., Sasago, Y., Uchinokura, K. (1997). “Large thermoelectric power in NaCo2O4 single crystals,” Phys. Rev. B 56, 1268512687.Google Scholar
Thompson, P., Cox, D. E. & Hastings, J. B. (1987). “Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3 ”, J. Appl. Crystallogr. 20, 7983.CrossRefGoogle Scholar
Wang, S., Venimadhav, A., Guo, S., Chen, K., Li, Q., Soukiassian, A., Schlom, D. G., Katz, M. B., Pan, X. Q., Wong-Ng, W., Vaudin, M. D., and Xi, X. X. (2009). “Structural and thermoelectric properties of Bi2Sr2Co2Oy thin films on LaAlO3 (100) and fused silica substrates,” Appl. Phys. Lett. 94, 022110.Google Scholar
Wong-Ng, W., McMurdie, H. F., Paretzkin, B., and Zhang, Y., Davis, K. L., Hubbard, C. R., Dragoo, A. L., and Stewart, J. M. (1987). “Standard X-ray diffraction powder patterns of sixteen ceramic phases,” Powder Diffr. 2(3), 191202.CrossRefGoogle Scholar
Wong-Ng, W., Hu, Y. F., Vaudin, M. D., He, B., Otani, M., Lowhorn, N. D., and Li, Q. (2007). “Texture and phase analysis of a Ca3Co4O9 thermoelectric film on Si (100) substrate,” J. Appl. Phys. 102(3), 33520.Google Scholar
Wong-Ng, W., Liu, G., Martin, J., Thomas, E. L., Lowhorn, N., and Kaduk, J. A. (2010). “Phase compatibility of the thermoelectric properties of compounds in the Sr–Ca–Co–O system,” J. Appl. Phys. 107, 033508.Google Scholar
Wong-Ng, W., Luo, T., Xie, W., Tang, W. H., Kaduk, J. A., Huang, Q., Yan, Y., Tang, X., and Tritt, T. (2011). “Phase diagram, crystal chemistry and thermoelectric properties of compounds in the Ca–Co–Zn–O system,” J. Solid State Chem. 184(8), 21592166.Google Scholar
Wong-Ng, W., Laws, W. J., Yan, Y. G. (2013). “Phase diagram and crystal chemistry of the La–Ca–Co–O system”, Solid State Sci. 17, 107110.Google Scholar
Wong-Ng, W., Laws, W. J., Talley, K. R., Huang, Q., Yan, Y., Martin, J., and Kaduk, J. A. (2014). “Phase equilibria and crystal chemistry of the CaO–½Nd2O3–CoOz system at 885 °C in air,” J. Solid State Chem. 215, 128134.Google Scholar
Supplementary material: File

Liu supplementary material S1

Liu supplementary material

Download Liu supplementary material S1(File)
File 360.4 KB
Supplementary material: File

Liu supplementary material S2

Liu supplementary material

Download Liu supplementary material S2(File)
File 359.7 KB
Supplementary material: File

Liu supplementary material S3

Liu supplementary material

Download Liu supplementary material S3(File)
File 360.3 KB
Supplementary material: File

Liu supplementary material S4

Liu supplementary material

Download Liu supplementary material S4(File)
File 365.7 KB