Skip to main content Accessibility help
×
Home

Calcite V: a hundred-year-old mystery has been solved

  • Nobuo Ishizawa (a1)

Abstract

Since Boeke's finding of a reversible phase transition of calcite (calcium carbonate, CaCO3) at elevated temperatures [Boeke, H. E. (1912). Neues Jahrb. Mineral. 1, 91–121], and following W. L. Bragg's determination of the structure of the room-temperature Phase I [Bragg, W. L. (1914). Proc. R. Soc. Lond. A 89, 468–489.], the high-temperature Phase V of calcite has been an enduring mystery. Here, we summarize a paper on the structure of Phase V [Ishizawa, N., Setoguchi, H. and Yanagisawa, K. (2013). Sci. Rep. 3, 2832], as well as the intermediate Phase IV which exists between Phases I and V, and add new aspects. An in situ single-crystal X-ray diffraction study revealed that the I–IV and IV–V transitions occurred reversibly at approximately 985 and 1240 K, respectively, in a carbon dioxide atmosphere. Phase V was stable only over a narrow temperature range between 1240 and 1275 K. The crystal decomposed immediately at temperatures above 1275 K, leaving a nanoporous calcium oxide reaction product which retained the shape of the parent calcite crystal. The I–IV transition can be described as an orientational order/disorder transition of the carbonate group, occurring within the same space group $R\bar 3c$ . In Phase V, the oxygen sublattice is melted. The joint-probability density function obtained from the anharmonic atomic displacement parameters of the oxygen atoms revealed that the oxygen triangles of the carbonate group in Phase V do not sit still at specified Wyckoff positions in the space group $R\bar 3m$ , but are instead distributed with equal probability along the undulated circular orbital about the central carbon. The carbonate group in Phase V is no longer flat on the basal plane when the oxygen triangle comes to troughs or peaks in the undulated orbital, but is instead deformed like an umbrella. Assuming that the oxygen triangle migrates about carbon, the carbonate group should repeat the umbrella inversion in Phase V as a function of time. Finally, possible thermal decomposition mechanisms of calcite are briefly discussed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Calcite V: a hundred-year-old mystery has been solved
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Calcite V: a hundred-year-old mystery has been solved
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Calcite V: a hundred-year-old mystery has been solved
      Available formats
      ×

Copyright

Corresponding author

a)Author to whom correspondence should be addressed. Electronic mail: ishizawa@nitech.ac.jp

References

Hide All
Antao, S. M., Hassan, I., Mulder, W. H., Lee, P. L., and Toby, B. H. (2009). “In situ study of the $R\bar 3c$ to $R\bar 3m$ orientational disorder in calcite,” Phys. Chem. Miner. 36, 159169.
Bayarjargal, L., Shumilova, T. G., Friedrich, A., and Winkler, B. (2010). “Diamond formation from CaCO3 at high pressure and temperature,” Eur. J. Miner. 22, 2934.
Boeke, H. E. (1912). “Die Schmelzerscheinungen und die umkehrbare Umwandlung des Calciumcarbonats,” Neues Jahrb. Miner. 1, 91121.
Bragg, W. L. (1914). “The analysis of crystals by the X-ray spectrometer,” Proc. R. Soc. Lond. A 89, 468489.
Dove, M. T. and Powell, B. M. (1989). “Neutron diffraction study of the tricritical orientational order/disorder phase transition in calcite at 1260 K,” Phys. Chem. Miner. 16, 503507.
Dove, M. T., Swainson, I. P., Powell, B. M., and Tennant, D. C. (2005). “Neutron powder diffraction study of the orientational order–disorder phase transition in calcite, CaCO3,” Phys. Chem. Miner. 32, 493503.
Hagen, M., Dove, M. T., Harris, M. J., Steigenberger, U., and Powell, B. M. (1992). “Orientational order-disorder phase transition in calcite,” Physica B 180–181, 276278.
Holleman, A. F., Wiber, E., and Wiberg, N. (2001). Inorganic Chemistry (Academic Press, San Diego), p. 810.
Ishizawa, N., Setoguchi, H., and Yanagisawa, K. (2013). “Structural evolution of calcite at high temperatures: phase V unveiled,” Sci. Rep., 3, 2832.
Markgraf, S. A. and Reeder, R. J. (1985). “High-temperature structure refinements of calcite and magnesite,” Amer. Mineral., 70, 590600.
Maslen, E. N., Streltsov, V. A., and Streltsova, N. R. (1993). “X-ray study of the electron density in calcite, CaCO3,” Acta Crystallogr., B: Struct. Sci. 49, 636641.
Matvienko, A. A., Chizhik, S. A., and Sidel'nikov, A. A. (2013). “A new kinetic model of calcite thermal decomposition,” Dokl. Phys. Chem. 451, 184186.
Mirwald, P. W. (1976). “A differential thermal analysis study of the high-temperature polymorphism of calcite at high pressure,” Contrib. Mineral. Petrol. 59, 3340.
Mirwald, P. W. (1979). “The electrical conductivity of calcite between 300 and 1200 °C at a CO2 pressure of 40 bars,” Phys. Chem. Miner. 4, 291297.
Momma, K. and Izumi, F. (2011). “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr. 44, 12721276.
Petricek, V., Dusek, M., and Palatinus, L. (2006). Jana2006. The Crystallographic Computing System (Institute of Physics, Praha, Czech Republic).
Searcy, A. W. and Beruto, D. (1976). “Kinetics of endothermic decomposition reactions. I. Steady-state chemical steps,” J. Phys. Chem. 80, 425429.
Searcy, A. W. and Beruto, D. (1978). “Kinetics of endothermic decomposition reactions. 2. Effects of the solid and gaseous products,” J. Phys. Chem. 82, 163167.
Tables of Physical & Chemical Constants (2005). 2.2.4 Mean velocity, free path and size of molecules. Kaye & Laby Online. http://www.kayelaby.npl.co.uk
Tsuboi, C. (1927). “On the effect of temperature upon the crystal structure of calcite,” Proc. Imperial Acad. (Japan) 3, 1718.
Willis, B. T. M. and Pryor, A. W. (1975). Thermal Vibrations in Crystallography (Cambridge University Press, London).

Keywords

Calcite V: a hundred-year-old mystery has been solved

  • Nobuo Ishizawa (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed