Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T09:43:24.871Z Has data issue: false hasContentIssue false

The Background in X-Ray Powder Diffractograms: A Case Study of Rietveld Analysis of Minor Phases Using Ni-Filtered and Graphite-Monochromated Radiation

Published online by Cambridge University Press:  10 January 2013

R.J. Hill
Affiliation:
CSIRO Division of Mineral Products, P.O. Box 124, Port Melbourne, Australia

Abstract

High resolution X-ray powder diffraction data have been collected with Bragg-Brentano geometry on samples of MgO using Ni-filtered and graphite-monochromated CuKαradiation. Selection of the characteristic radiation by Ni-filtering produces severe peak asymmetry, truncates the low-angle foot of the peak, lowers the general level of background on the low angle side, and leaves a remnant Kβpeak for all foils of reasonable thickness. When step-scan data produced by this method are used for Rietveld analysis, all of these features cause difficulties in fitting a smooth function to the background and in successfully modelling the detailed profiles of the peaks. On the other hand, Kαradiation from a diffracted-beam monochromator provides inherently more symmetric peaks and a smoothly varying background on both sides of the peak centre, both of which effects can be adequately modelled during Rietveld analysis. The primary disadvantage with monochromation is that, even with very careful setting of the pulse height discrimination, the monochromator may pass a small proportion of the λ/2 component of the incident radiation. In samples containing small quantities (i.e., 2 wt%, or less) of impurity phases, the undesirable features of the diffractometer profile (i.e., asymmetric and truncated background, and Kβand λ/2 peaks) can be of similar intensity to the main peaks arising from the impurities (as well as substructure peaks from the primary phases), thereby leading to difficulties in their identification and quantification. Nevertheless, with due care and long data collection times, the abundances of minor phases can be measured with Rietveld analysis down to levels of the order of 0.1 wt%.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albinati, A.& Willis, B.T.M.(1982). J. Appl. Crystallogr. 15, 361374.CrossRefGoogle Scholar
Berger, H.(1986). X-Ray Spedrometry, 15, 241243.CrossRefGoogle Scholar
Bish, D.L.& Howard, S.A.(1988). J. Appl. Crystallogr. 21, 8691.CrossRefGoogle Scholar
Bish, D.L.& Post, J.E.Editors (1989). Modern Powder Diffraction, Reviews in Mineralogy, Vol 20, Series Ed. P.H. Ribbe, Washington, Mineralogical Society of America.CrossRefGoogle Scholar
Brindley, G.W.(1945). Phil. Mag. 36, 347369.Google Scholar
Catlow, C.R.A.(1986). Editor, High Resolution Powder Diffraction, Mat. Sci. Forum, Volume 9, Proceedings of a Study Weekend, Daresbury Laboratory, March 1986.CrossRefGoogle Scholar
Cheetham, A.K.& Taylor, J.C.(1977). J. Solid State Chem. 21, 253275.CrossRefGoogle Scholar
Cullity, B.D.(1978). Elements of X-ray Diffraction, 2ndEd. Reading; Addison-Wesley, p. 20.Google Scholar
Dollase, W.A.(1986). J. Appl. Crystallogr. 19, 267272.CrossRefGoogle Scholar
Effenberger, H., Mereiter, K.& Zemann, J.(1981). Zeit. Krist. 156, 233243.Google Scholar
Frost, M.T.Jones, M.H., Flann, R.C., Hart, R.L., Strode, P.R., Urban, A.J.& Tassios, S.(1990). Trans. Instn. Mining Metall. (Sect. C: Mineral Process. Extr. Metall.) 99, Sept-Dec. 1990, C117-C124.Google Scholar
Göttlicher, S.& Vegas, A.(1988). Acta Crystallogr. B44, 362367.CrossRefGoogle Scholar
Hewat, A.W.(1986). Chemica Scripta, 26A, 119130.Google Scholar
Hill, R.J.(1983). J. Power Sources, 9, 5571.Google Scholar
Hill, R.J.(1984). Amer. Mineral. 69, 937942.Google Scholar
Hill, R.J.(1990). In, Powder Diffraction, Proceedings of the Satellite Meeting of the XVth Congress of the IUCr, Toulouse, France, July 16-19, 1990, Abstract V-L2, pp. 267268.Google Scholar
Hill, R.J.(1991). Pow. Diff. 6, 7477.CrossRefGoogle Scholar
Hill, R.J.& Fischer, R.X.(1990). J. Appl. Crystallogr. 23, 462468.CrossRefGoogle Scholar
Hill, R.J.& Howard, C.J.(1986). A Computer Program for Rietveld Analysis of Fixed Wavelength X-ray and Neutron Powder Diffraction Patterns. Aust. Atomic Energy Commission (now ANSTO) Report No. M112. Lucas Heights, Res. Labs. NSW, Australia.Google Scholar
Hill, R.J.& Howard, C.J.(1987). J. Appl. Crystallogr. 20, 467474.Google Scholar
Hill, R.J.& Madsen, I.C.(1984). J. Electmchem. Soc. 131, 14861491.Google Scholar
Hill, R.J.& Madsen, I.C.(1987). Pow. Diff. 2, 146162.CrossRefGoogle Scholar
Hill, R.J., Rand, D.A.J.& Woods, R.(1987). In, Pearce, L. J.(Ed.) Power Sources 11: Research and Development in Non-Mechanical Eletrical Power Sources, Proc: 15th Internat. Power Sources Symp. Brighton, UK, Sept. 1986(Symposium Committee, Leatherhead, UK, 1987) pp. 103126.Google Scholar
Hill, R.J.& Reichert, B.E.(1990). J. Am. Ceramic. Soc. 73, 28222827.Google Scholar
Howard, C.J., Hill, R.J., & Sufi, M.A.M.(1988). Chemistry in Australia, Oct. 1988, 367369.Google Scholar
Klug, H.P.& Alexander, L.E.(1974). X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. New York: Wiley.Google Scholar
Le Page, Y.& Donnay, G.(1976). Acta. Crystallgr. B32, 24562459.Google Scholar
Madsen, I.C., Finney, R., Flann, R.C.A., Frost, M.T.& Wilson, B.W.(1991). J. Am. Ceramic. Soc. 74, 619624.Google Scholar
March, A.(1932). Zeit. Kristallogr. 81, 285297.Google Scholar
Markgraf, S.A.& Reeder, R.J.(1985). Amer. Mineral. 70, 590600.Google Scholar
Maskil, N.& Deutsch, M.(1988). Phys. Rev. 38, 34673472.CrossRefGoogle Scholar
Midgley, C.M.(1952). Acta Crystallogr. 5, 307312.CrossRefGoogle Scholar
Moore, P.B.& Araki, T.(1972). Amer. Mineral. 57, 13551374.Google Scholar
Mutsuddy, B.C.(1990). Ceram. Bull. 69, 15111518.Google Scholar
O'Connor, B.H., Li, D.Y., Jordan, B., Raven, M.D.& Fazey, P.G.(1990). Adv. in X-ray Analysis, 33, 269275.Google Scholar
O'Connor, B.H.& Raven, M.D.(1988) Pow. Diff. 3, 26.Google Scholar
Rietveld, H.M.(1969). J. Appl. Crystallogr. 2, 6571.CrossRefGoogle Scholar
Smith, D.K., Majumdar, A.& Ordway, F.(1965) Acta. Crystallogr. 18, 787795.Google Scholar
Taylor, J.C.(1985). Aust.J. Physics 38, 519538.Google Scholar
Taylor, J.C.& Matulis, C.E.(1991). J. Appl. Crystallogr. 24, 1417.CrossRefGoogle Scholar
Van der Wal, R.J., Vos, A., & Kirfel, A.(1987). Acta Crystallgr. B43, 132143.Google Scholar
Vidal-Valat, G., Vidal, J.P.& Kurki-Suonio, K.(1978). Acta Crystallogr. A34, 594602.CrossRefGoogle Scholar
Werner, P.-E., Salome, S., Malmros, G.& Thomas, J.O.(1979). J. App. Crystallogr. 12, 107109.CrossRefGoogle Scholar
Wiles, D.B.& Young, R.A.(1981). J. Appl. Crystallogr. 14, 149151.Google Scholar
Young, R.A., Prince, E.& Sparks, R.A.(1982). J. Appl. Crystallogr. 15, 357359.CrossRefGoogle Scholar
Zigan, F.& Rothbauer, R.(1967). N. Jb. Miner. Mh. 1967, 137143.Google Scholar