Skip to main content Accessibility help
×
Home

X-ray powder diffraction analysis of the incommensurate modulated structure of Bi2Sr2CaCu2O8

Published online by Cambridge University Press:  10 January 2013


D. P. Matheis
Affiliation:
Institute of Ceramic Superconductivity, New York State College of Ceramics at Alfred University, Alfred, New York 14802
R. L. Snyder
Affiliation:
Institute of Ceramic Superconductivity, New York State College of Ceramics at Alfred University, Alfred, New York 14802

Abstract

X-ray powder diffraction is a convenient tool for monitoring changes in structural parameters due to modifications in sample composition and processing conditions. Due to the complexity of incommensurate modulated structures powder diffraction techniques have not been commonly applied. Programs ALSQ and QRIET have been produced to perform lattice parameter and structure refinements on incommensurate modulated materials with a displacive modulation model. In applying these programs to the Bi2Sr2CaCu2O8 superconductor which has this type of structure, it is shown that a decrease in the lattice parameters and an increase in the modulation vector occurs as the Ca content of the Bi-2212 phase, controlled by the use of the glass ceramic process, increases.


Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below.

References

Beskrovnyi, A., Dlouha, M., Jirak, Z., Vratislav, S., and Pollert, E. (1990a). Physica C 166, 7986.CrossRefGoogle Scholar
Beskrovnyi, A., Dlouha, M., Jirak, Z., and Vratislav, S. (1990b). Physica C 171, 1924.CrossRefGoogle Scholar
DeWolff, P. M. (1974). Acta Crystallogr. A 30, 777785.CrossRefGoogle Scholar
DeWolff, P. M. (1977). Acta Crystallogr. A 33, 493497.CrossRefGoogle Scholar
DeWolff, P. M., Janssen, T., and Janner, A. (1981). Acta Crystallogr. A 37, 625636.CrossRefGoogle Scholar
Eibl, O. (1990). Physica C 169, 441–50.CrossRefGoogle Scholar
Gao, Y., Lee, P., Coppens, P., Subramanian, M., and Sleight, A. (1988). Science 241, 954.CrossRefGoogle Scholar
Howard, S. A., and Snyder, R. L. (1989). J. Appl. Crystallogr. 22, 238243.CrossRefGoogle Scholar
Hubbard, C. R., Lederman, S. M., and Pyrros, N. P. (1982). U.S. Natl. Bureau of Standards.Google Scholar
Imai, K., Nakai, I., Kawashima, T., Sueno, S., and Ono, A. (1988). Jpn. J. Appl. Phys. Lett. 27, L1661.CrossRefGoogle Scholar
James, R. W. (1948). Optical Principles of the Diffraction of X-rays (Bell, London), pp. 114.Google Scholar
Janner, A., and Ascher, E. (1970). Physica 46, 162.CrossRefGoogle Scholar
Janner, A., and Janssen, T. (1979). Phys. Rev. B 15, 643.CrossRefGoogle Scholar
Kajitani, T., Kusaba, K., Kikuchi, M., Kobayashi, N., Syonon, N., Williams, T., and Hirabayashi, M. (1988). Jpn. J. Appl. Phys. Lett. 27, L587.CrossRefGoogle Scholar
LePage, Y., McKinnon, W., Tarascon, J., and Barboux, P. (1989). Phys. Rev. B 40, 6810.CrossRefGoogle Scholar
Matheis, D. P., and Snyder, R. L. (1990). Powder Diffr. 5, 825.CrossRefGoogle Scholar
Matheis, D. P., Misture, S. T., and Snyder, R. L. (1993a). Physica C 207, 134142.CrossRefGoogle Scholar
Matheis, D. P., Misture, S. T. and Snyder, R. L. (1993b) Physica C (in press).Google Scholar
Petricek, V.Coppens, P., and Becker, P. (1985). Acta Crystallogr. A 41, 478483.CrossRefGoogle Scholar
Petricek, V., and Coppens, P. (1988a). Acta Crystallogr. A 44, 235239.CrossRefGoogle Scholar
Petricek, V., and Coppens, P. (1988b). Acta Crystallogr. A 44, 10511055.CrossRefGoogle Scholar
Petricek, V., Gao, Y., Lee, P., and Coppens, P. (1990). Phys. Rev. B 42, 387392.CrossRefGoogle Scholar
Rietveld, H. M. (1967). Acta Crystallogr. 22, 151–52.CrossRefGoogle Scholar
Rietveld, H. M. (1969). J. Appl. Crystallogr. 2, 6571.CrossRefGoogle Scholar
Ruddlesden, S., and Popper, P. (1957). Acta Crystallogr. 10, 538.CrossRefGoogle Scholar
Smith, G. S., and Snyder, R. L., J. Appl. Crystallogr. 12, 6065 (1979).CrossRefGoogle Scholar
Subramanian, M., Torardi, C., Calabrese, J., Gopalakrishnan, J., Morrissey, K., Askew, T., Flippen, R., Chowdry, U., and Sleight, A. (1988). Science 239, 1015.CrossRefGoogle Scholar
Sunshine, S., Siegrist, T., Schneemeyer, L., Murphy, D., Cava, R., Batlogg, B., van Dover, R., Fleming, R., Glarum, S., Nakara, S., Farrow, R., Krajewski, J., Zahurak, S., Waszczak, J., Marshall, J., Marsh, P., Rupp, L., and Peck, W. (1988). Phys. Rev. B 38, 893.CrossRefGoogle Scholar
Tarascon, J., Le Page, Y., and McKinnon, W. (1990). Eur. J. Solid State Inorg. Chem. 27, 81.Google Scholar
Torardi, C., Parisi, J., Subramanian, M., and Sleight, A. (1989). Physica C 157, 115.CrossRefGoogle Scholar
Wiles, D. B., and Young, R. A. (1981). J. Appl. Crystallogr. 14, 149–51.CrossRefGoogle Scholar
Yamamoto, A., Onoda, M., Takayama-Muromachi, E., Izumi, F., Ishigaki, T., and Asano, H. (1990). Phys. Rev. B Condens. Matter 42(7), 4228–39.CrossRefGoogle Scholar
Yamamoto, A. (1991). Nippon Kessho Gakkaishi 32(4), 229233.CrossRefGoogle Scholar
Zandbergen, H., Groen, W., Mijlhoff, F., van Tendeloo, G., and Amelinckx, S. (1988). Physica C 156, 325.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 3 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 3rd December 2020. This data will be updated every 24 hours.

Hostname: page-component-6c64649b67-qq8cg Total loading time: 0.384 Render date: 2020-12-03T12:13:48.577Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Thu Dec 03 2020 11:15:45 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

X-ray powder diffraction analysis of the incommensurate modulated structure of Bi2Sr2CaCu2O8
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

X-ray powder diffraction analysis of the incommensurate modulated structure of Bi2Sr2CaCu2O8
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

X-ray powder diffraction analysis of the incommensurate modulated structure of Bi2Sr2CaCu2O8
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *