Skip to main content Accessibility help
×
Home

A Rietveld-analysis program for X-ray powder spectro-diffractometry

Published online by Cambridge University Press:  10 January 2013

Yanan Xiao
Affiliation:
Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-8656, Japan
Shinjiro Hayakawa
Affiliation:
Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-8656, Japan
Yohichi Gohshi
Affiliation:
Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-8656, Japan
Masaharu Oshima
Affiliation:
Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo, Tokyo 113-8656, Japan
Fujio Izumi
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
Hiroki Okudera
Affiliation:
Ceramics Research Laboratory, Nagoya Institute of Technology, Asahigaoka, Tajimi 507-0071, Japan
Hideo Toraya
Affiliation:
Ceramics Research Laboratory, Nagoya Institute of Technology, Asahigaoka, Tajimi 507-0071, Japan
Kazumasa Ohsumi
Affiliation:
Institute of Materials Structure Science, High Energy Accelerator Research Organization, Oho, Tsukuba 305-0801, Japan

Abstract

In order to exploit X-ray powder spectro-diffractometry, the program RIETAN-97ß for refining crystal structure and lattice parameters by the Rietveld method was modified extensively. The resulting software can be used to refine anomalous scattering factors, fr and fi, for specified crystallographic sites near the X-ray absorption edge of a particular element. The effectiveness of the modified software was tested by using powder diffraction patterns simulated by the original RIETAN-97ß software and a series of measured powder diffraction patterns of Fe3O4 with incident X-ray energies near the absorption edge of iron.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1999

Access options

Get access to the full version of this content by using one of the access options below.

References

Attfield, J. P. (1990). “Determination of valence and cation distributions by resonant powder X-ray diffraction,” Nature (London) 343, 4649.CrossRefGoogle Scholar
Attfield, J. P. (1991). “Resonant powder X-ray diffraction applied to mixed valence compounds and the possibility of site-resolved X-ray absorption spectroscopy illustrated for YBa 2Cu 3O 6.27,J. Phys. Chem. Solids 52, 12431249.CrossRefGoogle Scholar
Cox, D. E., and Wilkinson, A. P. (1994). Resonant Anomalous X-ray Scattering—Theory and Applications, edited by G. Materlik, C. J. Sparks, and K. Fischer (Elsevier, Amsterdam), pp. 195–219.Google Scholar
Izumi, F. (1996). “The Rietveld method and its applications to synchrotron X-ray powder data,” in Applications of Synchrotron Radiation to Materials Analysis, edited by H. Saisho and Y. Gohshi (Elsevier, Amsterdam), 405 pp.Google Scholar
James, R. W. (1965). The Optical Principles of the Diffraction X-rays (G. Bell, London), 135 pp.Google Scholar
Kwei, G. H., Von Dreele, R. B., Williams, A., Goldstone, J. A., Lawson, A. C. II, and Warburton, W. K. (1990). “Structure and valence from complementary anomalous X-ray and neutron powder diffraction,” J. Mol. Struct. 223, 383406.CrossRefGoogle Scholar
Nakaura, M., Ozawa, T., Saiga, K., Kumazawa, S., Katoh, H., Ishida, K., Ozawa, H., and Ohsumi, K. (1995). “Study of Cu absorption edge of YBCO superconductor by X-ray powder diffraction method,” J. Phys. Soc. Jpn. 64, 33363342.CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.CrossRefGoogle Scholar
Roth, W. L. (1964). “The magnetic structure of Co 3O 4,J. Phys. Chem. Solids 25, 110.CrossRefGoogle Scholar
Sasaki, S. (1995). “Fe 2+ and Fe 3+ ions distinguishable by X-ray anomalous scattering: Method and its application to magnetite,” Rev. Sci. Instrum. 66, 15731576.CrossRefGoogle Scholar
Toyoda, T., Sasaki, S., and Tanaka, M. (1997). “X-ray diffuse scattering study of magnetite by valence-difference contrast method,” Jpn. J. Appl. Phys. 36, 22472252.CrossRefGoogle Scholar
Warner, J. K., Cheetham, A. K., Cox, D. E., and Von Dreele, R. B. (1992). “Valence contrast between iron sites in α-Fe 2PO 5: A comparative study by magnetic neutron and resonant X-ray powder diffraction,” J. Am. Chem. Soc. 114, 60746080.CrossRefGoogle Scholar
Wilkinson, A. P., Cheetham, A. K., and Cox, D. E. (1991). “Study of oxidation-state contrast in gallium dichloride by synchrotron X-ray anomalous scattering,” Acta Crystallogr., Sect. B: Struct. Sci. 47, 155161.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 8 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 25th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-4qfsd Total loading time: 0.502 Render date: 2021-01-25T08:42:30.987Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Rietveld-analysis program for X-ray powder spectro-diffractometry
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A Rietveld-analysis program for X-ray powder spectro-diffractometry
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A Rietveld-analysis program for X-ray powder spectro-diffractometry
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *