Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-10T23:32:07.868Z Has data issue: false hasContentIssue false

New procedure to obtain Bragg-reflection intensities from FULLPROF suite for powder crystal-structure determination using GEST and PECKCRYST programs

Published online by Cambridge University Press:  29 February 2012

Zhen Jie Feng*
Affiliation:
Department of Physics, Shanghai University, Shanghai, People’s Republic of China
Yong Lei Zheng
Affiliation:
Department of Physics, Shanghai University, Shanghai, People’s Republic of China
Yu Ling Su
Affiliation:
Department of Physics, Shanghai University, Shanghai, People’s Republic of China
Biao Shao
Affiliation:
Department of Physics, Shanghai University, Shanghai, People’s Republic of China
Ming Tao Li
Affiliation:
Department of Physics, Shanghai University, Shanghai, People’s Republic of China
Shi Xun Cao
Affiliation:
Department of Physics, Shanghai University, Shanghai, People’s Republic of China
Jin Cang Zhang
Affiliation:
Department of Physics, Shanghai University, Shanghai, People’s Republic of China
*
a)Author to whom correspondence should be addressed. Electronic mail: fengzhenjie@shu.edu.cn

Abstract

A useful procedure is described to rapidly obtain Bragg-reflection intensities from the FULLPROF suite, and the Bragg intensities can then be input into the GEST and the PECKCRYST programs for crystal-structure determination of small molecules. An example on using the new procedure for the structure determination from powder diffraction determination of hydrochlorothiazide (C7H8ClN3O4S2) is presented, and the powder-structure results obtained by the PECKCRYST program are in good agreement with previously reported single-crystal results.

Type
Computer Program
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brodski, V., Peschar, R., and Schenk, H. (2003). “A Monte Carlo approach to crystal structure determination from powder diffraction data,” J. Appl. Crystallogr. JACGAR 36, 239243.10.1107/S0021889802023208CrossRefGoogle Scholar
Cheung, E. Y., Hanson, A. J., Habershon, S., and Harris, K. D. M. (2005). “Crystal structures from powder X-ray diffraction using genetic algorithms,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ 61, c114.10.1107/S010876730509519XCrossRefGoogle Scholar
David, W. I. F. and Shankland, K. (2008). “Structure determination from powder diffraction data,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ 64, 5264.10.1107/S0108767307064252CrossRefGoogle ScholarPubMed
Dong, C. (1999). “POWDERX: Windows-95-based program for powder X-ray diffraction data processing,” J. Appl. Crystallogr. JACGAR 32, 838.10.1107/S0021889899003039CrossRefGoogle Scholar
Dupont, P. L. and Dideberg, O. (1972). “Structure crystalline de l'hydrochlorothiazide, C7H8ClN3O4S2,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 28, 23402347.10.1107/S0567740872006090CrossRefGoogle Scholar
Engel, G. E., Wilke, S., Kónig, O., Harris, K. D. M., and Leusen, F. J. J. (1999). “POWDERSOLVE: A complete package for crystal structure solution from powder diffraction patterns,” J. Appl. Crystallogr. JACGAR 32, 11691179.10.1107/S0021889899009930CrossRefGoogle Scholar
Favre-Nicolin, V. and Černý, R. (2002). “FOX, ‘free objects for crystallography’: A modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. JACGAR 35, 734743.10.1107/S0021889802015236CrossRefGoogle Scholar
Feng, Z. J. and Dong, C. (2007). “GEST: A program for structure determination from powder diffraction data using a genetic algorithm,” J. Appl. Crystallogr. JACGAR 40, 583588.10.1107/S0021889807008618CrossRefGoogle Scholar
Feng, Z. J., Dong, C., Jia, R. R., Cao, S. X., and Zhang, J. C. (2009). “PECKCRYST: A program for structure determination from powder diffraction data using particle swarm optimization algorithm,” J. Appl. Crystallogr. JACGAR 42, 11891193.10.1107/S0021889809034207CrossRefGoogle Scholar
Hanson, A. J., Cheung, E. Y., Habershon, S., and Harris, K. D. M. (2005). “Optimization of genetic algorithm techniques for powder structure solution,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ 61, c162.10.1107/S0108767305093116CrossRefGoogle Scholar
Harris, K. D. M., Johnston, R. L., and Habershon, S. (2004). Applications of Evolutionary Computation in Chemistry, edited by Johnson, R. L. (Springer, New York), pp. 5594.CrossRefGoogle Scholar
Harris, K. D. M., Johnston, R. L., and Kariuki, B. M. (1998). “The genetic algorithm: Foundations and applications in structure solution from powder diffraction data,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ 54, 632645.10.1107/S0108767398003389CrossRefGoogle Scholar
Harris, K. D. M., Tremayne, M., Lightfoot, P., and Bruce, P. G. (1994). “Crystal structure determination from powder diffraction data by Monte Carlo methods,” J. Am. Chem. Soc. JACSAT 116, 35433547.10.1021/ja00087a047CrossRefGoogle Scholar
Le Bail, A., Duroy, H., and Fourquet, J. L. (1988). “Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction,” Mater. Res. Bull. MRBUAC 23, 447452.10.1016/0025-5408(88)90019-0CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2008). “VESTA: A Three-dimensional visualization system for electronic and structural analysis,” J. Appl. Crystallogr. JACGAR 41, 653658.10.1107/S0021889808012016CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1990). “FULLPROF: A program for Rietveld refinement and pattern matching analysis,” Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, p. 127.Google Scholar