Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-16T16:38:12.989Z Has data issue: false hasContentIssue false

Crystal structure and synchrotron X-ray powder reference pattern for the porous pillared cyanonickelate, Ni(3-amino-4,4′-bipyridine)[Ni(CN)4]

Published online by Cambridge University Press:  29 February 2024

W. Wong-Ng*
Affiliation:
Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
J. Culp
Affiliation:
United States Department of Energy, National Energy Technology Laboratory (NETL), P.O. Box 10940, Pittsburgh, PA 15236-0940, USA United States Department of Energy, NETL Support Contractor, P.O. Box 10940, Pittsburgh, PA 15236-0940, USA
J.A. Kaduk
Affiliation:
Illinois Institute of Technology, Chicago, IL 60616, USA North Central College, Naperville, IL 64540, USA
Y.S. Chen
Affiliation:
ChemMatCARS, University of Chicago, Argonne, IL 60439, USA
S. Lapidus
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: winnie.wong-ng@nist.gov

Abstract

The structure of Ni(3-amino-4,4′-bipyridine)[Ni(CN)4] (or known as Ni-BpyNH2) in powder form was determined using synchrotron X-ray diffraction and refined using the Rietveld refinement technique (R = 8.8%). The orthorhombic (Cmca) cell parameters were determined to be a = 14.7218(3) Å, b = 22.6615(3) Å, c = 12.3833(3) Å, V = 4131.29(9) Å3, and Z = 8. Ni-BpyNH2 forms a 3-D network, with a 2-D Ni(CN)4 net connecting to each other via the BpyNH2 ligands. There are two independent Ni sites on the net. The 2-D nets are connected to each other via the bonding of the pyridine “N” atom to Ni2. The Ni2 site is of six-fold coordination to N with relatively long Ni2–N distances (average of 2.118 Å) as compared to the four-fold coordinated Ni1–C distances (average of 1.850 Å). The Ni(CN)4 net is arranged in a wave-like fashion. The functional group, –NH2, is disordered and was found to be in the m-position relative to the N atom of the pyridine ring. Instead of having a unique position, N has ¼ site occupancy in each of the four m-positions. The powder reference diffraction pattern for Ni-BpyNH2 was prepared and submitted to the Powder Diffraction File (PDF) at the International Centre of Diffraction Data (ICDD).

Type
New Diffraction Data
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, A. J., Espinal, L., Wong-Ng, W., Queen, W. L., Brown, C. M., Kline, S. R., Kauffman, J. T., Culp, J. T., and Matranga, C.. 2015. “Flexible Metal-Organic Framework Compounds: In Situ Studies for Selective CO2 Capture.” Journal of Alloys and Compounds 647: 2434. doi:10.1016/j.jallcom.2015.05.148.CrossRefGoogle Scholar
Allen, A., Wong-Ng, W., Cockayne, E., Espinal, L. A., Culp, J. T., and Matranga, C.. 2019. “Structural Basis of CO2 Adsorption in a Flexible Metal Organic Framework Material.” Nanomaterials 9 (3): 354–60. doi:10.3390/nano9030354.CrossRefGoogle Scholar
Allen, A. J., Cockayne, E., Wong-Ng, W., Culp, J. T., and Kuzmenko, I.. 2023. “Dynamic Structural and Microstructural Responses of a Metal Organic Framework Type Material to Carbon Dioxide Under Dual Gas Flow and Supercritical Conditions.” Journal of Applied Crystallography 56: 222–36. doi:10.1107/S1600576722012134.CrossRefGoogle Scholar
Brown, C. M., and Long, J. R.. 2014. “Reversible CO Binding Enables Tunable CO/H2 and CO/N2 Separations in Metal-Organic Frameworks with Exposed Divalent Metal Cations.” Journal of American Chemical Society 136 (30): 10752–61. doi:10.1021/ja505318p.Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E., and Orpen, A. G.. 2004. “Retrieval of Crystallographically - Derived Molecular Geometry Information.” Journal of Chemical Information and Computer Sciences 44: 2133–44. doi:10.1021/ci049780b.CrossRefGoogle ScholarPubMed
Černák, J., and Abboud, K. A.. 2000. “Ni(bipy)2Ni(CN)4, A New Type of One-Dimensional Square Tetracyano Complex.” Acta Crystallographica Section C 56: 783–5. doi:10.1107/S0108270100004996.Google ScholarPubMed
Cockayne, E., Wong-Ng, W., Chen, Y. S., Culp, J. T., and Allen, A. J.. 2021. “Density Functional Theory Study of the Structure of the Pillared Hofmann compound Ni(3-Methy- 4,4′-bipyridine)[Ni(CN)4] (Ni-BpyMe or PICNIC 21).” Journal of Physical Chemistry C 125 (29): 15882–9. doi:10.1021/acs.jpcc.6b11692.CrossRefGoogle Scholar
Culp, J. T., Smith, M. R., Bittner, E., and Bockrath, B.. 2008a. “Hysteresis in the Physisorption of CO2 and N2 in a Flexible Pillard Layer Nickel Cyanide.” Journal of American Chemical Society 130: 12427–34. doi:10.1021/ja802474bCrossRefGoogle Scholar
Culp, J. T., Natesakhawat, S., Smith, M. R., Bittner, E., Matranga, C. S., and Bockrath, B.. 2008b. “Hydrogen Storage Properties of Rigid Three-Dimensional Hofmann Clathrate Derivatives: The Effect of Pore Size.” Journal of Physical Chemistry C 112: 7079–83. doi:10.1021/jp710996y.CrossRefGoogle Scholar
Culp, J. T., Madden, C., Kauffman, K., Shi, F., and Matranga, C.. 2013. “Screening Hofmann Compounds as CO2 Srobents: Nontraditional Synthetic Route to over 40 Different Pore-Functionalized and Flexible Pillard Cyanonickelates.” Inorganic Chemistry 52: 4205–16. doi:10.1021/ic301893p.CrossRefGoogle Scholar
Dalesio, L. R., Hill, J. O., Kraimer, M., Lewis, S., Murray, D., Hunt, S., Watson, W., Clausen, M., and Dalesio, J.. 1994. “Nuclear Instruments & Methods.” Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment 352: 179–84. doi:10.1016/0168-9002(94)91493-1.CrossRefGoogle Scholar
Dassault Systèms. 2022. Materials Studio 2023. San Diego, CA, BIOVIA.Google Scholar
Espinal, L., Poster, D. L., Wong-Ng, W., Allen, A. J., and Green, M. L.. 2009. “Standards, Data, and Metrology Needs for CO2 Capture Materials – A Critical Review.” Environmental Science and Technology 47: 11960–75. doi:10.1021/es402622q.CrossRefGoogle Scholar
Espinal, L., Wong-Ng, W., Kaduk, J. A., Allen, J., Snyder, C. R., Chiu, C., Siderius, D. W., Li, L., Cockayne, E., Espinal, A. E., and Snyder, S. L.. 2012. “Time Dependent CO2 Sorption Hysteresis in a One-Dimensional Microporous Octahedral Molecular Sieve.” Journal of American Chemical Society 134 (18): 7944–51. doi:10.1021/ja3014133.CrossRefGoogle Scholar
Etheridge, D. M., Steele, L. P., Langenfelds, R. L., Francey, R. J., Barnola, J. M., and Morgan, V. I.. 1996. “Natural and Anthropogenic Changes in Atmospheric CO2 Over the Last 1000 Years from Air in Antarctic Ice and Fire.” Journal of Geophysical Research Atmospheric 101 (D2): 4115–28. doi:10.1029/95JD03410.CrossRefGoogle Scholar
Freund, R., Zaremba, O., Arnauts, G., Ameloot, R., Skorupskii, G., Dinca, M., Bavykina, A., Gascon, J., Ejsmont, A., Goscianska, J., Kalmutzki, M., Lächelt, U., Ploetz, E., Diercks, S., and Wuttke, S.. 2021. “The Current Status of MOF and COF.” Angewandie Chemie International Edition 60: 2397524001. doi:10.1002/anie.202106259CrossRefGoogle ScholarPubMed
Furukawa, H., O'Keeffe, K. E., and Yaghi, O. M.. 2013. “The Chemistry and Applications of Metal-Organic Frameworks.” Science 341: 1230444. doi:10.1126/science.1230444.CrossRefGoogle Scholar
Gammon, R. H., Sundquist, E. T., and Fraser, P. J.. 1985. History of carbon dioxide in the atmosphere in Trabalka, J. R. (Ed.) Atmospheric Carbon Dioxide and the Global Carbon Cycle. DOE/ER-239, U.S. Department of Energy, Washington, D.C. pp. 2562.Google Scholar
Gao, W.-Y., Chrzanowski, M., and Ma, S.. 2014. “Metal-Metalloporphyrin Frameworks: Resurging Class of Functional Materials.” Chemical Society Review 43: 5841–66. doi:10.1039/C4CS00001C.CrossRefGoogle ScholarPubMed
Gates-Rector, S. D., and Blanton, T. N.. 2019. “The Powder Diffraction File: A Quality Materials Characterization Database.” Powder Diffraction 39: 352–60. doi:10.1017/S0885715619000812.CrossRefGoogle Scholar
Hofmann, K. A., and Küspert, F.. 1897. “Verbindungen von Kohlenwasserstoffen mit Metallsalzen.” Zeitschrift für anorganische und allgemeine Chemie 15: 204–7. doi:10.1002/zaac.18970150118.CrossRefGoogle Scholar
Kauffman, K. L., Culp, J. T., Allen, A. J., Espinal-Thielen, L., Wong-Ng, W., Brown, T. D., Goodman, A., Bernardo, M. P., Pancoast, R. J., Chirdon, D., and Matranga, C.. 2011. “Selective Adsorption of CO2 from Light Gas Mixture by Using a Structurally Dynamic Porous Coordination Polymer.” Angewandie Chemie International Edition 50: 10888–92. doi:10.1002/ange.201104130CrossRefGoogle ScholarPubMed
Lawson, M., Horn, J., Wong-Ng, W., Espinal, L., Lapidus, S. H., Nguyen, H. G., Meng, Y., Suib, S. L., Kaduk, J. A., and Li, L.. 2019. “Carbon Capture and Storage Properties of Porous Octahedral Molecular Sieve.” Powder Diffraction 34 (1): 1320. doi:10.1017/S0885715619000010.CrossRefGoogle Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H.. 2008. “A Twelve-Analyzer Detector System for High-Resolution Powder Diffraction.” Journal of Synchrotron Radiation 15: 427–32. doi:10.1107/S09090495080184384.CrossRefGoogle ScholarPubMed
Liu, Y., Wang, Z. U., and Zhou, H.-C.. 2012. “Recent Advances in Carbon Dioxide Capture with Metal-Organic Frameworks.” Greenhouse Gas Science Technology 2: 239–59. doi:10.1002/ghg.1296.CrossRefGoogle Scholar
Queen, W. L., Hudson, M. R., Bloch, E. D., Mason, J. A., Gonzalez, M. I., Lee, J. S., Gygi, D., Howe, J. D., Lee, K., Darwish, T. A., James, M., Peterson, V. K., Teat, S. J., Smit, B., Neaton, J. B., Long, J. R., and Brown, C. M.. 2014. “Comprehensive Study of Carbon Dioxide Adsorption in the Metal-Organic Frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn).” Chemical Science 5: 4569–81. doi:10.1039/C4SC02064B.CrossRefGoogle Scholar
Rietveld, H. M. 1969. “A Profile Refinement Method for Nuclear and Magnetic Structures.” Journal of Applied Crystallography 2: 6571. doi:10.1107/S0021889869006558.CrossRefGoogle Scholar
Stephens, P. W. 1999. “Phenomenological Model of Anisotropic Peak Broadening in Powder Diffraction.” Journal of Applied Crystallography 32: 281–9. doi:10.1107/S0021889898006001.CrossRefGoogle Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J., and Wood, P. A.. 2011. “New Software for Statistical Analysis of Cambridge Structural Database Data.” Journal of Applied Crystallography 44: 882–6. doi:10.1107/S0021889811014622.CrossRefGoogle Scholar
Toby, B. H., and Von Dreele, R.. 2013. “GSAS-II: The Genesis of a Modern Open-Source All Purpose Crystallography Software Package.” Journal of Applied Crystallography 46 (2): 544–9. doi:10.1107/S0021889813003531.CrossRefGoogle Scholar
Unnikrishnan, V., Zabihi, O., Ahmadi, M., Li, Q., Blanchard, P., Kiziltasb, A., and Naebe, M.. 2021. “Metal–Organic Framework Structure–Property Relationships for High-Performance Multifunctional Polymer Nanocomposite Applications.” Journal of Materials Chemistry. A 9: 4348–78. doi:10.1039/D0TA11255K.CrossRefGoogle Scholar
Walters, R. L. 2008. NIST Standard References Materials 676a: Alumina Powder for Quantitative Analysis by X-ray Diffraction.” Contact the NIST SRM program. e-mail address: srminfo@nist.govGoogle Scholar
Walters, R. L. 2015. NIST Standard References Materials 640e: Line Position and Line Shape Standard for Powder Diffraction (Silicon Powder).” Contact the NIST SRM program. e-mail address: srminfo@nist.govGoogle Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A.. 2008. “A Dedicated Powder Diffraction Beamline at the Advanced Photon Source: Commissioning and Early Operational Results.” Review of Scientific Instruments 79: 085105. doi:10.1063/1.2969260.CrossRefGoogle ScholarPubMed
Wong-Ng, W. 2018. “In Situ Diffraction Studies of Selected Metal-Organic Framework (MOF) Materials For Guest Capture/Exchange Applications”. Chapter 4 “Materials and Processes for CO2 Capture, Conversion, and Sequestration.” Wiley and Sons Publisher, ISBN 978-1-119-23103-5.Google Scholar
Wong-Ng, W., Kaduk, J. A., Wu, H., and Suchomel, M.. 2012. “Synchrotron X-ray Studies of Metal-Organic Framework M2(2,5-dihydroxyterephthalte), M = (Mn,Co,Ni,Zn) (MOF74).” Powder Diffraction 27 (4): 256–62. doi:10.1017/S0885715612000863.CrossRefGoogle Scholar
Wong-Ng, W., Culp, J. T., Chen, Y. S., Zavalij, P., Espinal, L., Siderius, D. W., Allen, A. J., Scheins, S., and Matranga, C.. 2013. “Improved Synthesis and Crystal Structure of the Flexible Pillared Layer Porous Coordination Polymer: Ni(1,2-bis(4-pyridyl) ethylene)[Ni(CN)4].” Cryengcomm 15: 4684–93. doi:10.1039/C3CE00017F.CrossRefGoogle Scholar
Wong-Ng, W., Kaduk, J. A., Siderius, D. L., Allen, A. L., Espinal, L., Boyerinas, B. M., Levin, I., Suchomel, M. R., Ilavsky, J., Li, L., Williamson, I., Cockayne, E., and Wu, H.. 2015. “Reference Diffraction Patterns, Microstructure, and Pore Size Distribution for the Copper (II) benzene-1,3,5-tricarboxylate Metal Organic Framework (Cu-BTC) Compounds.” Powder Diffraction 30: 213. doi:10.1017/S0885715614001195.CrossRefGoogle Scholar
Wong-Ng, W., Culp, J. T., Chen, Y. S., and Matranga, C.. 2016a. “Crystallography of Representative Flexible MOFs Based on Pillard Cyanonickelate (PICNIC) Architecture.” CRYSTALS 6 (9): 108. doi:10.3390/cryst6090108CrossRefGoogle Scholar
Wong-Ng, W., Culp, J. T., Chen, Y.-S., Deschamps, J., and Marti, A.. 2016b. “Flexible Metal Organic Framework {[Ni(DpBz)][Ni(CN)4]}n, DpBz = 1,4-Bis(4-pyridyl)benzene) with an Unusual Ni-N Bond.” Solid State Sciences 52: 19. doi:10.1016/j.solidstatesciences.2015.11.010.CrossRefGoogle Scholar
Wong-Ng, W., Williamson, I., Lawson, M., Siderus, D. W., Culp, J. T., Chen, Y. S., and Li, L.. 2018. “Electronic Structure, Pore Size Distribution, and Sorption Characterization of an unusual MOF, {[Ni(dpbz)][Ni(CN)4]}n, dpbz = 1,4-bis(4-pyridyl)benzene.” Journal of Applied Physics 123 (24): 245105. doi:10.1063/1.5031446.CrossRefGoogle Scholar
Wong-Ng, W., McCandless, G. T., Culp, J. T., Lawson, M., Chen, Y. S., Siderius, D. W., and Li, L.. 2021a. “Synchrotron Crystal Structure, Sorption Property and Electronic Structure of the Flexible MOF, Ni(Ni-4,4′azopyridine)[Ni(CN)4].” Solid State Sciences 118: 106646. doi:10.1016/j.solidstatesciences.2021.106646.CrossRefGoogle Scholar
Wong-Ng, W., Culp, J. T., Siderius, D. W., Chen, Y. S., Wang, S. Y. G., Allen, A. J., and Cockayne, E.. 2021b. “Synthesis, Structural and Sorption Characterization of a Hofmann Compound, Ni(3-Methy- 4′- bipyridine)[Ni(CN)4], for CO2 Capture Application.” Polyhedron 200: 115132. doi:10.1016/j.poly.2021.115132.CrossRefGoogle Scholar
Zhou, H. C., and Kitagawa, S.. 2014. “Metal–Organic Frameworks (MOFs).” Chemical Society Review 43: 5415–8. doi:10.1039/C4CS90059FCrossRefGoogle ScholarPubMed