Skip to main content Accessibility help
×
Home

Analytical method for observed powder diffraction intensity data based on maximum likelihood estimation

Published online by Cambridge University Press:  16 April 2013

Takashi Ida
Affiliation:
Advanced Ceramics Research Center, Nagoya Institute of Technology, Nagoya, Japan
Fujio Izumi
Affiliation:
National Institute for Materials Science, Ibaraki, Japan
Corresponding

Abstract

A new methodology based on maximum likelihood estimation for structure refinement using powder diffraction data is proposed. The method can not only optimize the parameters adjusted in Rietveld refinement but also parameters to specify errors in a model for statistical properties of the observed intensity. The results of structure refinements with relation to fluorapatite Ca5(PO4)3F, anglesite PbSO4, and barite BaSO4 are demonstrated. The structure parameters of fluorapatite and barite optimized by the new method are closer to single-crystal data than those optimized by the Rietveld method, while the structure parameters of anglesite, whose values optimized by the Rietveld method are already in good agreement with the single-crystal data, are almost unchanged by the application of the new method.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below.

References

Alexander, L., Klug, H. P., and Kummer, E. (1948). “Statistical factors affecting the intensity of X-rays diffracted by crystalline powders”, J. Appl. Phys. 19, 742753.CrossRefGoogle Scholar
De Wolff, P. M. (1958). “Particle statistics in X-ray diffractometry. I. General theory”, Appl. Sci. Res. B 7, 102112.CrossRefGoogle Scholar
Hill, R. J. (1992). “Rietveld refinement round robin. I. Analysis of standard X-ray and neutron data for PbSO4”, J. Appl. Crystallogr. 25, 589610.CrossRefGoogle Scholar
Ida, T. and Izumi, F. (2011). “Application of a theory for particle statistics to structure refinement from powder diffraction data”, J. Appl. Crystallogr. 44, 921927.CrossRefGoogle Scholar
Ida, T., Goto, T., and Hibino, H. (2009). “Evaluation of particle statistics in powder diffractometry by a spinner-scan method”, J. Appl. Crystallogr. 42, 597606.CrossRefGoogle Scholar
Izumi, F. and Momma, K. (2007). “Three-dimensional visualization in powder diffraction”, Solid State Phenom. 130, 1520.CrossRefGoogle Scholar
Miyake, M., Minato, I., Morikawa, H., and Iwai, S. (1978). “Crystal structures and sulphate force constants of barite, celestite, and angle site”, Am. Meneral. 63, 506510.Google Scholar
Rodríguez-Carvajal, J. (1993). “Recent advances in magnetic structure determination by neutron powder diffraction”, Physica B 192, 5569.CrossRefGoogle Scholar
Sudarsanan, K., Mackie, P. E., and Young, R. E. (1972). “Comparison of synthetic and mineral fluorapatite, Ca5(PO4)3F, in crystallographic detail”, Mater. Res. Bull. 7, 13311338.CrossRefGoogle Scholar
Toraya, H. (1998). “Weighting scheme for the minimization function in Rietveld refinement”, J. Appl. Crystallogr. 31, 333343.CrossRefGoogle Scholar
Toraya, H. (2000). “Crystal structure refinement of α-Si3N4 using synchrotron radiation powder diffraction data: unbiased refinement strategy”, J. Appl. Crystallogr. 33, 95102.CrossRefGoogle Scholar
Young, R. A., Sakthivel, A., Moss, T. S., and Paiva-Santos, C. O. (1995). “DBWS-9411 – an upgrade of the DBWS*.* programs for Rietveld refinement with PC and mainframe computers”, J. Appl. Crystallogr. 28, 366367.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 3
Total number of PDF views: 28 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 18th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-zjqt5 Total loading time: 0.279 Render date: 2021-01-18T02:05:56.186Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Mon Jan 18 2021 01:54:58 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Analytical method for observed powder diffraction intensity data based on maximum likelihood estimation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Analytical method for observed powder diffraction intensity data based on maximum likelihood estimation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Analytical method for observed powder diffraction intensity data based on maximum likelihood estimation
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *