Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-21T14:39:16.287Z Has data issue: false hasContentIssue false

Adsorption of Ar into zeolite Al-MFI (NH4)

Published online by Cambridge University Press:  08 February 2024

Colin W. Scherry
North Central College, 131 S. Loomis St., Naperville, IL 60540, USA
James A. Kaduk*
North Central College, 131 S. Loomis St., Naperville, IL 60540, USA Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616, USA
Winnie Wong-Ng
Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8520, USA
Huong Giang T. Nguyen
Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899-8390, USA
a)Author to whom correspondence should be addressed. Electronic mail:


The crystal structure of anhydrous Al-MFI (NH4) containing adsorbed Ar has been determined and refined using synchrotron X-ray powder diffraction data taken at 90 K, and optimized using density functional theory techniques. Six highly occupied Ar sites almost completely fill the pore volume of the zeolite. Changing the gas flow from Ar to He at 90 K decreases the Ar occupancies of all six sites, but two decrease more than the others. Warming the sample from 90 to 295 K in Ar flow results in further decreases in site occupancies, but five of the original six sites persist.

Technical Article
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Antao, S. M., Hassan, I., Wang, J., Lee, P. L., and Toby, B. H.. 2008. “State-of-the-Art High-Resolution Powder X-ray Diffraction (HRPXRD) Illustrated with Rietveld Refinement of Quartz, Sodalite, Tremolite, and Meionite.” Canadian Mineralogist 46: 1501–9.CrossRefGoogle Scholar
Artioli, G., Lamberti, C., and Marra, G. L.. 2000. “Neutron Powder Diffraction Study of Orthorhombic and Monoclinic Defective Silicate.” Acta Crystallographica Section B: Structural Science 56: 210.CrossRefGoogle Scholar
Cho, H. S., Miyasaka, K., Kim, H., Kubota, Y., Takata, M., Kitagawa, S., Ryoo, R., and Terasaki, O.. 2012. “Study of Argon Gas Adsorption in Ordered Mesoporous MFI Zeolite Framework.” The Journal of Physical Chemistry C 116: 25300–8.CrossRefGoogle Scholar
Crystal Impact. 2022. Diamond. V. 4.6.8. Crystal Impact – Dr. H. Putz & Dr. K. Brandenburg. Bonn, Windows.Google Scholar
Erba, A., Desmarais, J. K., Casassa, S., Civalleri, B., Donà, L., Bush, I. J., Searle, B., Maschio, L., Daga, L.-E., Cossard, A., Ribaldone, C., Ascrizzi, E., Marana, N. L., Flament, J.-P., and Kirtman, B.. 2023. “CRYSTAL23: A Program for Computational Solid State Physics and Chemistry.” Journal of Chemical Theory and Computation 19: 68916932. doi:10.1021/acs.jctc.2c00958.CrossRefGoogle ScholarPubMed
Guesmi, H., Massiani, P., Nouali, H., and Paillaud, J.-L.. 2012. “A Combined Experimental and Theoretical Study of the Simultaneous Occupation of Sia and Si’ Sites in Fully Dehydrated K-LSX.” Microporous and Mesoporous Materials 159: 8795.CrossRefGoogle Scholar
Heo, N. H., Lim, W. T., and Seff, K.. 1996. “Crystal Structures of Encapsulates within Zeolites. 2. Argon in Zeolite A.” Journal of Physical Chemistry 100: 13725–31.CrossRefGoogle Scholar
Kresse, G., and Furthmüller, J.. 1996. “Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set.” Computational Materials Science 6: 1550.CrossRefGoogle Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Ribaud, L., Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H.. 2008. “A Twelve-Analyzer Detector System for High-Resolution Powder Diffraction.” Journal of Synchrotron Radiation 15: 427–32.CrossRefGoogle ScholarPubMed
Lee, Y., Hriljac, J. A., and Vogt, T.. 2010. “Pressure-Induced Argon Insertion into an Auxetic Small Pore Zeolite.” Journal of Physical Chemistry C 114: 6922–7.CrossRefGoogle Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M., and Wood, P. A.. 2020. “Mercury 4.0: From Visualization to Design and Prediction.” Journal of Applied Crystallography 53: 226–35.CrossRefGoogle ScholarPubMed
Materials Design. 2016. MedeA 2.20.4. Angel Fire, NM, Materials Design Inc.Google Scholar
MDI. 2023. JADE Pro Version 8.8. Livermore, CA, Materials Data.Google Scholar
Nguyen, H. G. T., Espinal, L., van Zee, R. D., Thommes, M., Toman, B., Hudson, M. S. L., and De Weireld, G.. 2018. “A Reference High-Pressure CO2 Adsorption Isotherm for Ammonium ZSM-5 Zeolite: Results of an Interlaboratory Study.” Adsorption 24 (6): 531–9. doi:10.1007/s10450-018-9958-x.CrossRefGoogle ScholarPubMed
Nguyen, H. G. T., Toman, B., Colon Martinez, J., D. W., Siderius, and R. D., van Zee. 2022. “Reference Surface Excess Isotherms for Carbon Dioxide Adsorption on Ammonium ZSM-5 at Various Temperatures.” Adsorption 28: 1525. doi:10.1007/s10450-022-00355-x.CrossRefGoogle Scholar
Stephens, P. W. 1999. “Phenomenological Model of Anisotropic Peak Broadening in Powder Diffraction.” Journal of Applied Crystallography 32: 281–9.CrossRefGoogle Scholar
Toby, B. H., and Von Dreele, R. B.. 2013. “GSAS II: The Genesis of a Modern Open Source All Purpose Crystallography Software Package.” Journal of Applied Crystallography 46: 544–9.CrossRefGoogle Scholar
Turner, S., Sieber, J. R., Vetter, T. W., Zeisler, R., Marlow, A. F., Moreno-Ramirez, M. G., Davis, M. E., Kennedy, G. J., Borghard, W. G., Yang, S., Navrotsky, A., Toby, B. H., Kelly, J. F., Fletcher, R. A., Windsor, E. S., Verkouteren, J. R., and Leigh, S. D.. 2008. “Characterization of Chemical Properties, Unit Cell Parameters and Particle Size Distribution of Three Zeolite Reference Materials: RM 8850 – Zeolite Y, RM 8851 – Zeolite A and RM 8852 – Ammonium ZSM-5 Zeolite.” Microporous and Mesoporous Materials 107: 252–67.CrossRefGoogle Scholar
van de Streek, J., and Neumann, M. A.. 2014. “Validation of Molecular Crystal Structures from Powder Diffraction Data with Dispersion-Corrected Density Functional Theory (DFT-D).” Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials 70: 1020–32.CrossRefGoogle ScholarPubMed
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A.. 2008. “A Dedicated Powder Diffraction Beamline at the Advanced Photon Source: Commissioning and Early Operational Results.” Review of Scientific Instruments 79: 085105.CrossRefGoogle ScholarPubMed