Skip to main content Accessibility help
×
×
Home

Predicting Network Events to Assess Goodness of Fit of Relational Event Models

  • Laurence Brandenberger (a1) (a2)

Abstract

Relational event models are becoming increasingly popular in modeling temporal dynamics of social networks. Due to their nature of combining survival analysis with network model terms, standard methods of assessing model fit are not suitable to determine if the models are specified sufficiently to prevent biased estimates. This paper tackles this problem by presenting a simple procedure for model-based simulations of relational events. Predictions are made based on survival probabilities and can be used to simulate new event sequences. Comparing these simulated event sequences to the original event sequence allows for in depth model comparisons (including parameter as well as model specifications) and testing of whether the model can replicate network characteristics sufficiently to allow for unbiased estimates.

Copyright

Corresponding author

Footnotes

Hide All

Author’s note: The author would like to thank Philip Leifeld for helpful comments and conversations as well as participants of the conference panel ‘Modeling Network Dynamics II: Time-stamped Network Data’ at the Third European Conference on Social Networks in Mainz (September, 2017) for helpful questions and comments. The author would also like to thank two anonymous reviewers and the editor for their valuable comments. LB carried out parts of this research while at the Swiss Federal Institute of Aquatic Science and Technology (Eawag).

Contributing Editor: Jeff Gill

Footnotes

References

Hide All
Andersen, P. K., and Gill, R. D.. 1982. “Cox’s Regression Model for Counting Processes: A Large Sample Study.” The Annals of Statistics 10:11001120.
Brandenberger, L.2018a. “Replication Files for: Predicting Network Events to Assess Goodness of Fit of Relational Event Models.” https://doi.org/10.7910/DVN/GM5SYQ, Harvard Dataverse, V1.
Brandenberger, L. 2018b. “Trading Favors - Examining the Temporal Dynamics of Reciprocity in Congressional Collaborations Using Relational Event Models.” Social Networks 54:238253.
Brandes, U., Lerner, J., and Snijders, T. A.. 2009. “Networks Evolving Step by Step: Statistical Analysis of Dyadic Event Data.” 2009 International Conference on Advances in Social Network Analysis and Mining, 200–205. Piscataway, NJ: Institute of Electrical and Electronics Engineers.
Butts, C. T. 2008. “A Relational Event Framework for Social Action.” Sociological Methodology 38(1):155200.
Cox, D. R., and Oakes, D.. 1984. Analysis of Survival Data . London: Chapman and Hall.
Cranmer, S. J., Leifeld, P., McClurg, S. D., and Rolfe, M.. 2017. “Navigating the Range of Statistical Tools for Inferential Network Analysis.” American Journal of Political Science 61(1):237251.
Davis, J., and Goadrich, M.. 2006. “The Relationship Between Precision-Recall and Roc Curves.” In Proceedings of the 23rd International Conference on Machine Learning , 233240. ACM.
Desmarais, B. A., Moscardelli, V. G., Schaffner, B. F., and Kowal, M. S.. 2015. “Measuring Legislative Collaboration: The Senate Press Events Network.” Social Networks 40:4354.
DuBois, C., Butts, C., and Smyth, P.. 2013. “Stochastic Blockmodeling of Relational Event Dynamics.” In Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics , 238246. Available at http://proceedings.mlr.press/v31/dubois13a.pdf.
Hunter, D. R., Goodreau, S. M., and Handcock, M. S.. 2008. “Goodness of Fit of Social Network models.” Journal of the American Statistical Association 103(481):248258.
Hunter, D. R., Handcock, M. S., Butts, C. T., Goodreau, S. M., and Morris, M.. 2008. “Ergm: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks.” Journal of Statistical Software 24(3):nihpa54860.
Kitts, J. A., Lomi, A., Mascia, D., Pallotti, F., and Quintane, E. et al. . 2016. “Investigating the Temporal Dynamics of Inter-Organizational Exchange: Patient Transfers Among Italian Hospitals.” American Journal of Sociology 123(3):850910.
Leifeld, P. 2016. Policy Debates as Dynamic Networks: German Pension Politics and Privatization Discourse . Frankfurt am Main: Campus.
Leifeld, P. 2017. “Discourse Network Analysis: Policy Debates as Dynamic Networks.” In The Oxford Handbook of Political Networks, Chapter 12 , edited by Victor, J. N., Lubell, M. N., and Montgomery, A. H., 301326. Oxford: Oxford University Press.
Leifeld, P., and Brandenberger, L.. 2019. “Endogenous Coalition Formation in Policy Debates.” Preprint, arXiv:1904.05327.
Leifeld, P., Cranmer, S. J., and Desmarais, B. A.. 2018. “Temporal Exponential Random Graph Models With Btergm: Estimation and Bootstrap Confidence Intervals.” Journal of Statistical Software 83(6):136.
Lerner, J., Bussmann, M., Snijders, T. A., and Brandes, U.. 2013. “Modeling Frequency and Type of Interaction in Event Networks.” Corvinus Journal of Sociology and Social Policy 4(1):332.
Lerner, J., Indlekofer, N., Nick, B., and Brandes, U.. 2013. “Conditional Independence in Dynamic Networks.” Journal of Mathematical Psychology 57(6):275283.
Quintane, E., Conaldi, G., Tonellato, M., and Lomi, A.. 2014. “Modeling Relational Events. A Case Study on an Open Source Software Project.” Organizational Research Methods 17(1):2350.
Robins, G., Pattison, P., and Woolcock, J.. 2005. “Small and Other Worlds: Global Network Structures From Local Processes.” American Journal of Sociology 110(4):894936.
Sabatier, P. A., and Jenkins-Smith, H.. 1993. Policy Change and Learning: An Advocacy Coalition Approach . Boulder: Westview Press.
Welbers, K., and de Nooy, W.. 2014. “Stylistic Accommodation on an Internet Forum as bonding: Do Posters Adapt to the Style of Their Peers?.” American Behavioral Scientist 58(10):13611375.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Political Analysis
  • ISSN: 1047-1987
  • EISSN: 1476-4989
  • URL: /core/journals/political-analysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Brandenberger supplementary material
Brandenberger supplementary material 1

 Unknown (304 KB)
304 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed