## References

Besag, J.
1974. Spatial interaction and the statistical analysis of lattice systems.
*Journal of the Royal Statistical Society. Series B (Methodological)*
26(2):192–236.

Besag, J.2000. Markov chain Monte Carlo for statistical inference. Technical report, University of Washington, Center for Statistics and the Social Sciences.

Box-Steffensmeier, J. M., and Christenson, D. P.. 2014. The evolution and formation of amicus curiae networks.
*Social Networks*
36:82–96.

Box-Steffensmeier, J. M., and Christenson, D. P.. 2015. Comparing membership interest group networks across space and time, size, issue and industry.
*Network Science*
3(1):78–97.

Box-Steffensmeier, J. M., Christenson, D. P., and Morgan, J. W.. 2017. Replication data for: Modeling unobserved heterogeneity in social networks with the frailty exponential random graph model. Harvard Dataverse, doi:10.7910/DVN/K3D1M2.
Christenson, D. P., and Box-Steffensmeier, J. M.. 2016. Why amicus curiae cosigners come and go: A dynamic model of interest group networks. In
*Complex networks & their applications V: Proceedings of the 5th international workshop on complex networks and their applications*
, ed. Cherifi, H., Gaito, S., Quattrociocchi, W., and Sala, A.. Studies in Computational Intelligence. New York: Springer International Publishing, pp. 349–360.

Corander, J., Dahmström, K., and Dahmström, P.. 1998.
*Maximum likelihood estimation for Markov graphs*
. Stockholm: University of Stockholm, Department of Statistics.

Cranmer, S. J., and Desmarais, B. A.. 2011. Inferential network analysis with exponential random graph models.
*Political Analysis*
19:66–86.

Cranmer, S. J., Desmarais, B. A., and Menninga, E. J.. 2012. Complex dependencies in the alliance network.
*Conflict Management and Peace Science*
29(3):279–313.

Crouch, B., Wasserman, S., and Trachtenberg, F.. 1998. Markov chain Monte Carlo maximum likelihood estimation for
$p^{\ast }$
social network models. Paper Presented at the XVIII International Sunbelt Social Network Conference, Sitges, Spain.
Desmarais, B. A., and Cranmer, S. J.. 2010. Analyzing longitudinal networks: The temporal exponential random graph model. Presented at the Annual Meeting of the Midwest Political Science Association.

Durante, D., and Dunson, D. B.. 2014. Nonparametric bayes dynamic modelling of relational data.
*Biometrika*
101(4):883–898.

Eveland, W. P., and Hively, M. H.. 2009. Political discussion frequency, network size, and “heterogeneity” of discussion as predictors of political knowledge and participation.
*Journal of Communication*
59(2):205–224.

Feinberg, S. E., and Wasserman, S.. 1981. An exponential family of probability distributions for directed graphs: Comment.
*Journal of the American Statistical Association*
76(373):54–57.

Frank, O., and Strauss, D.. 1986. Markov graphs.
*Journal of the American Statistical Association*
81(395):832–842.

Franzese, R., and Hays, J.. 2006. Spatiotemporal models for political-science panel and time-series-cross-section data. Presented at the 23rd Meeting of the Society for Political Methodology, Davis, California.

Gelman, A., and Rubin, D. B.. 1992. Inference from iterative simulation using multiple sequences.
*Statistical Science*
7(4):457–472.

Goldstein, H.
2003.
*Multilevel statistics models*
. Oxford: Oxford University Press.

Gondal, N.
2011. The local and global structure of knowledge production in an emergent research field: An exponential random graph analysis.
*Social Networks*
33(1):20–30.

Goodreau, S. M., Kitts, J. A., and Morris, M.. 2009. Birds of a feather, or friend of a friend? Using exponential random graph models to investigate adolescent social networks.
*Demography*
46(1):103–125.

Handcock, M.2000. Progress in statistical modeling of drug user and sexual networks. Technical report, University of Washington, Center for Statistics and the Social Sciences.

Hanneke, S., Fu, W., and Xing, E. P.. 2010. Discrete temporal models of social networks.
*Electronic Journal of Statistics*
4:585–605.

Hanneke, S., and Xing, E. P.. 2007. Discrete temporal models of social networks. In
*Statistical network analysis: models, issues, and new directions: ICML 2006 workshop on statistical network analysis, Pittsburgh, PA, USA, June 29, 2006, Revised Selected Papers*
, ed. Airoldi, E., Blei, D. M., Fienberg, S. E., Goldenberg, A., Xing, E. P., and Zheng, A. X.. Berlin: Springer, pp. 115–125.

Hoff, P. D.
2015. Multilinear tensor regression for longitudinal relational data.
*The Annals of Applied Statistics*
9(3):1169–1193.

Hoff, P. D., Raftery, A. E., and Handcock, M. S.. 2002. Latent space approaches to social network analysis.
*Journal of the American Statistical Association*
97(460):1090–1098.

Hoff, P. D., and Ward, M. D.. 2004. Modeling dependencies in international relations networks.
*Political Analysis*
12:160–175.

Holland, P. W., and Leinhardt, S.. 1981. An exponential family of probability distributions for directed graphs.
*Journal of the American Statistical Association*
76(373):33–50.

Hunter, D. R.
2007. Curved exponential family models for social networks.
*Social Networks*
29(2):216–230.

Hunter, D. R., and Handcock, M. S.. 2006. Inference in curved exponential family models for networks.
*Journal of Computational and Graphical Statistics*
15(3):565–583.

Krivitsky, P. N., and Handcock, M. S.. 2014. A separable model for dynamic networks.
*Journal of the Royal Statistical Society: Series B (Statistical Methodology)*
76(1):29–46.

Krivitsky, P. N., Handcock, M. S., and Morris, M.. 2011. Adjusting for network size and composition effects in exponential-family random graph models.
*Statistical methodology*
8(4):319–339.

Krivitsky, P. N., Handcock, M. S., Raftery, A. E., and Hoff, P. D.. 2009. Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models.
*Social Networks*
31:204–213.

Lazega, E.
2001.
*The collegial phenomenon: The socail mechanisms of cooperation among peers in a corporate law partnership*
. Oxford, UK: Oxford University Press.

Lazega, E., and Pattison, P. E.. 1999. Multiplexity, generalized exchange and cooperation in organizations: A case study.
*Social Networks*
21:67–90.

Lee, L.-F., Liu, X., and Lin, X.. 2010. Specification and estimation of social interaction models with network structures.
*The Econometrics Journal*
13(2):145–176.

Minhas, S., Hoff, P. D., and Ward, M. D.. 2016. A new approach to analyzing coevolving longitudinal networks in international relations.
*Journal of Peace Research*
53(3):1–15.

Moody, J.
2001. Race, school integration, and friendship segregation in America.
*American Journal of Sociology*
107(3):679–716.

Nowicki, K., and Snijders, T. A. B.. 2001. Estimation and prediction for stochastic blockstructures.
*Journal of the American Statistical Association*
96(455):1077–1087.

Resnick, M. D., Bearman, P. S., Blum, R. W., Bauman, K. E., Harris, K. M., Jones, J., Tabor, J., Beuhring, T., Sieving, R. E., and Shew, M.. 1997. Protecting adolescents from harm: Findings from the national longitudinal study on adolescent health.
*Journal of the American Medical Association*
278(10):823–832.

Robins, G., Pattison, P., Kalish, Y., and Lusher, D.. 2007. An introduction to exponential random graph (p*) models for social networks.
*Social Networks*
29(2):173–191.

Salter-Townshend, M., and Brendan Murphy, T.. 2015. Role analysis in networks using mixtures of exponential random graph models.
*Journal of Computational and Graphical Statistics*
24(2):520–538.

Saul, Z. M., and Filkov, V.. 2007. Exploring biological network structure using exponential random graph models.
*Bioinformatics*
23(19):2604–2611.

Snijders, T. A.
2001. The statistical evaluation of social network dynamics.
*Sociological methodology*
31(1):361–395.

Snijders, T. A. B.
2002. Markov chain Monte Carlo estimation of exponential random graph models.
*Journal of Social Structure*
3(2):1–40.

Snijders, T. A., Pattison, P. E., Robins, G. L., and Handcock, M. S.. 2006. New specifications for exponential random graph models.
*Sociological Methodology*
36(1):99–153.

Snijders, T. A., Van de Bunt, G. G., and Steglich, C. E.. 2010. Introduction to stochastic actor-based models for network dynamics.
*Social Networks*
32(1):44–60.

Stan Development Team. 2015. Version 2.9.0.

Strauss, D., and Ikeda, M.. 1990. Pseudolikelihood estimation for social networks.
*Journal of the American Statistical Association*
85(409):204–212.

van Duijn, M. A. J., Gile, K. J., and Handcock, M. S.. 2009. A framework for the comparison of maximum pseudo-likelihood and maximum likelihood estimation of exponential family random graph models.
*Social Networks*
31:52–62.

Vaupel, J. W., Manton, K. G., and Stallard, E.. 1979. The impact of heterogeneity in individual frailty on the dynamics of mortality.
*Demography*
16(3):439–454.

Wang, Y. J., and Wong, G. Y.. 1987. Stochastic blockmodels for directed graphs.
*Journal of the American Statistical Association*
82(397):8–19.

Ward, M. D., Ahlquist, J. S., and Rozenas, A.. 2013. Gravity’s rainbow: A dynamic latent space network for the world trade network.
*Network Science*
1(1):95–118.

Ward, M. D., and Hoff, P. D.. 2007. Persistent patterns of international commerce.
*Journal of Peace Research*
44(2):157–175.

Wasserman, S., and Pattison, P.. 1996. Logit models and logistic regressions for social networks: I. An introduction to markov graphs and
$p$
.
*Psychometrika*
61(3):401–425.