Skip to main content Accessibility help
×
×
Home

Modeling Context-Dependent Latent Effect Heterogeneity

  • Diogo Ferrari (a1)

Abstract

Classical generalized linear models assume that marginal effects are homogeneous in the population given the observed covariates. Researchers can never be sure a priori if that assumption is adequate. Recent literature in statistics and political science have proposed models that use Dirichlet process priors to deal with the possibility of latent heterogeneity in the covariate effects. In this paper, we extend and generalize those approaches and propose a hierarchical Dirichlet process of generalized linear models in which the latent heterogeneity can depend on context-level features. Such a model is important in comparative analyses when the data comes from different countries and the latent heterogeneity can be a function of country-level features. We provide a Gibbs sampler for the general model, a special Gibbs sampler for gaussian outcome variables, and a Hamiltonian Monte Carlo within Gibbs to handle discrete outcome variables. We demonstrate the importance of accounting for latent heterogeneity with a Monte Carlo exercise and with two applications that replicate recent scholarly work. We show how Simpson’s paradox can emerge in the empirical analysis if latent heterogeneity is ignored and how the proposed model can be used to estimate heterogeneity in the effect of covariates.

Copyright

Corresponding author

Footnotes

Hide All

Author’s note: The author is thankful to Robert Franzese, Walter Mebane, Kevin Quinn, Long Nguyen, as well as participants of 2018 Polmeth and 2018 APSA Annual meeting for helpful comments on previous versions of this manuscript. The author also thanks the editor Jeff Gill and two anonymous reviewers for their invaluable suggestions. Replication materials are publicly available on the Political Analysis Harvard Dataverse (Ferrari 2018) as well as author’s website.

Contributing Editor: Jeff Gill

Footnotes

References

Hide All
Aakvik, A., Heckman, J. J., and Vytlacil, E. J.. 2005. “Estimating Treatment Effects for Discrete Outcomes When Responses to Treatment Vary: an Application to Norwegian Vocational Rehabilitation Programs.” Journal of Econometrics 125(1–2):1551.
Alesina, A., and Angeletos, G.-M.. 2005. “Fairness and Redistribution.” The American Economic Review 95(4):960980.
Alesina, A., and Giuliano, P.. 2010. “Preferences for Redistribution.” In Handbook of Social Economics , edited by Benhabib, J., Bisin, A., and Jackson, M. O., 93131. Amsterdam: Elsevier.
Arts, W., and Gelissen, J.. 2001. “Welfare States, Solidarity and Justice Principles: Does the Type Really Matter? Acta Sociologica 44(4):283299.
Bechtel, M. M., Hainmueller, J., and Margalit, Y.. 2014. “Preferences for International Redistribution: The Divide Over the Eurozone Bailouts.” American Journal of Political Science 58(4):835856.
Beramendi, P., and Rehm, P.. 2016. “Who gives, who gains? Progressivity and Preferences.” Comparative Political Studies 49(4):529563.
Blei, D. M, and Jordan, M. I. et al. . 2006. “Variational inference for Dirichlet process mixtures.” Bayesian Analysis 1(1):121143.
Blyth, C. R. 1972. “On Simpson’s Paradox and the Sure-Thing Principle.” Journal of the American Statistical Association 67(338):364366.
Brooks, S. P., and Gelman, A.. 1998. “General Methods for Monitoring Convergence of Iterative Simulations.” Journal of Computational and Graphical Statistics 7(4):434455.
Calin, O., and Chang, D.-C.. 2006. Geometric Mechanics on Riemannian Manifolds: Applications to Partial Differential Equations . Birkhauser: Springer Science & Business Media.
Carlin, B. P., and Louis, T. A.. 2000. Bayes and Empirical Bayes Methods for Data Analysis , 2nd edn. Boca Raton, FL: Chapman & Hall/CRC.
Carota, C., and Parmigiani, G.. 2002. “Semiparametric Regression for Count Data.” Biometrika 89(2):265281.
Chen, X. 2007. “Large Sample Sieve Estimation of Semi-Nonparametric Models.” Handbook of Econometrics 6:55495632.
Cowles, M. K., and Carlin, B. P.. 1996. “Markov chain Monte Carlo convergence diagnostics: a comparative review.” Journal of the American Statistical Association 91(434):883904.
De Iorio, M., Müller, P., Rosner, G. L., and MacEachern, S. N.. 2004. “An ANOVA Model for Dependent Random Measures.” Journal of the American Statistical Association 99(465):205215.
De la Cruz-Mesía, R., Quintana, F. A., and Marshall, G.. 2008. “Model-Based Clustering for Longitudinal Data.” Computational Statistics & Data Analysis 52(3):14411457.
Diaconis, P., and Freedman, D.. 1986. “On the Consistency of Bayes Estimates.” Annals of Statistics 14(1):126.
Dorazio, R. M., Mukherjee, B., Zhang, L., Ghosh, M., Jelks, H. L., and Jordan, F.. 2008. “Modeling Unobserved Sources of Heterogeneity in Animal Abundance Using a Dirichlet Process Prior.” Biometrics 64(2):635644.
Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D.. 1987. “Hybrid monte carlo.” Physics Letters B 195(2):216222.
Ebbes, P., Wedel, M., and Böckenholt, U.. 2009. “Frugal IV Alternatives to Identify the Parameter for an Endogenous Regressor.” Journal of Applied Econometrics 24(3):446468.
Ebbes, P., Wedel, M., Böckenholt, U., and Steerneman, T.. 2005. “Solving and Testing for Regressor-Error (in) Dependence When No Instrumental Variables are Available: With New Evidence for the Effect of Education on Income.” Quantitative Marketing and Economics 3(4):365392.
Ebbes, P., Böckenholt, U., and Wedel, M.. 2004. “Regressor and random-effects dependencies in multilevel models.” Statistica Neerlandica 58(2):161178.
Ferrari, D.2018. “Replication Data for: Modeling Context-Dependent Latent Effect Heterogeneity.” https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/WB9XLZ.
Flegal, J. M., Haran, M., and Jones, G. L.. 2008. “Markov Chain Monte Carlo: Can We Trust the Third Significant Figure? Statistical Science 23(2):250260.
Flegal, J. M.2008. “Monte Carlo Standard Errors for Markov Chain Monte Carlo.” PhD thesis, University of Minnesota.
Gaffney, S.2003. “Curve Clustering with Random Effects Regression Mixtures.” In Ninth International Workshop on Artificial Intelligence and Statistics, AISTATS. Key West, Florida.
Gelman, A., and Hill, J.. 2007. Data Analysis Using Regression and Multilevel/Hierarchical Models . Cambridge: Cambridge University Press.
Geweke, J. 1992. “Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments.” In Bayesian Statistics , 4th edn. 169193. Oxford: Oxford University Press.
Ghosal, S., Ghosh, J. K., and Ramamoorthi, R. V.. 1999. “Consistent Semiparametric Bayesian Inference about a Location Parameter.” Journal of Statistical Planning and Inference 77(2):181193.
Gill, J., and Casella, G.. 2009. “Nonparametric Priors for Ordinal Bayesian Social Science Models: Specification and Estimation.” Journal of the American Statistical Association 104(486):453454.
Girolami, M., and Calderhead, B.. 2011. “Riemann Manifold Langevin and Hamiltonian Monte Carlo Methods.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73(2):123214.
Grimmer, J. 2009. “A Bayesian Hierarchical Topic Model for Political Texts: Measuring Expressed Agendas in Senate Press Releases.” Political Analysis 18(1):135.
Hannah, L. A., Blei, D. M., and Powell, W. B.. 2011. “Dirichlet Process Mixtures of Generalized Linear Models.” Journal of Machine Learning Research 12(Jun):19231953.
Hayashi, F. 2000. Econometrics, vol. 1. Princeton, NJ: Princeton University Press.
Heckman, J. J., and Vytlacil, E. J.. 2007. “Econometric Evaluation of Social Programs, Part II: Using the Marginal Treatment Effect to Organize Alternative Econometric Estimators to Evaluate Social Programs, and to Forecast their Effects in New Environments.” Handbook of Econometrics 6:48755143.
Heinzl, F., and Tutz, G.. 2013. “Clustering in Linear Mixed Models with Approximate Dirichlet Process Mixtures Using EM Algorithm.” Statistical Modelling 13(1):4167.
Hernán, M. A., Clayton, D., and Keiding, N.. 2011. “The Simpson’s Paradox Unraveled.” International Journal of Epidemiology 40(3):780785.
Ichimura, H., and Todd, P. E.. 2007. “Implementing Nonparametric and Semiparametric Estimators.” Handbook of Econometrics 6:53695468.
Ishwaran, H., and James, L. F.. 2001. “Gibbs Sampling Methods for Stick-Breaking Priors.” Journal of the American Statistical Association 96(453):161173.
Ishwaran, H., and Zarepour, M.. 2000. “Markov Chain Monte Carlo in Approximate Dirichlet and Beta Two-Parameter Process Hierarchical Models.” Biometrika 87(2):371390.
Johnston, R., Banting, K., Kymlicka, W., and Soroka, S.. 2010. “National Identity and Support for the Welfare State.” Canadian Journal of Political Science 43(02):349377.
Kievit, R., Frankenhuis, W. E., Waldorp, L., and Borsboom, D.. 2013. “Simpson’s Paradox in Psychological Science: A Practical Guide.” Frontiers in Psychology 4(513):114.
Kleinman, K. P., and Ibrahim, J. G.. 1998a. “A Semi-Parametric Bayesian Approach to Generalized Linear Mixed Models.” Statistics in Medicine 17(22):25792596.
Kleinman, K. P., and Ibrahim, J. G.. 1998b. “A Semiparametric Bayesian Approach to the Random Effects Model.” Biometrics 54(3):921938.
Kyung, M., Gill, J., and Casella, G. et al. . 2010. “Estimation in Dirichlet Random Effects Models.” The Annals of Statistics 38(2):9791009.
Lenk, P. J., and DeSarbo, W. S.. 2000. “Bayesian Inference for Finite Mixtures of Generalized Linear Models with Random Effects.” Psychometrika 65(1):93119.
Little, R. et al. . 2011. “Calibrated Bayes, for Statistics in General, and Missing Data in Particular.” Statistical Science 26(2):162174.
Liu, J. S. 2008. Monte Carlo Strategies in Scientific Computing . New York: Springer Science & Business Media.
Mallick, B. K., and Walker, S. G.. 1997. “Combining Information from Several Experiments with Nonparametric Priors.” Biometrika 84(3):697706.
Matzkin, R. L. 2007. “Nonparametric Identification.” Handbook of Econometrics 6:53075368.
Mukhopadhyay, S., and Gelfand, A. E.. 1997. “Dirichlet Process Mixed Generalized Linear Models.” Journal of the American Statistical Association 92(438):633639.
Müller, P., and Mitra, R.. 2013. “Bayesian Nonparametric Inference-Why and How.” Bayesian Analysis 8(2):269302.
Müller, P., Quintana, F., and Rosner, G.. 2004. “A Method for Combining Inference Across Related Nonparametric Bayesian Models.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 66(3):735749.
Neal, R. M. 2000. “Markov Chain Sampling Methods for Dirichlet Process Mixture Models.” Journal of Computational and Graphical Statistics 9(2):249265.
Neal, R. M. et al. . 2011. MCMC Using Hamiltonian Dynamics , vol. 2. New York, NY: CRC Press.
Newman, B. J., Johnston, C. D., and Lown, P. L.. 2015. “False Consciousness or Class Awareness? Local Income Inequality, Personal Economic Position, and Belief in American Meritocracy.” American Journal of Political Science 59(2):326340.
Ng, S.-K., McLachlan, G. J., Wang, K., Ben-Tovim Jones, L., and Ng, S.-W.. 2006. “A Mixture Model with Random-Effects Components for Clustering Correlated Gene-Expression Profiles.” Bioinformatics 22(14):17451752.
Pearl, J.2011. “Simpson’s Paradox: An Anatomy.” Technical Report UCLA: Department of Statistics Los Angeles, California. https://escholarship.org/uc/item/3s62r0d6.
Pearl, J. 2014. “Comment: Understanding Simpson’s Paradox.” The American Statistician 68(1):813.
Pearson, K., Lee, A., and Bramley-Moore, L.. 1899. “Mathematical Contributions to the Theory of Evolution. VI. Genetic (Reproductive) Selection: Inheritance of Fertility in Man, and of Fecundity in Thoroughbred Racehorses.” Philosophical Transactions of the Royal Society of London Series A 192:257330.
Przeworski, A. 2007. “Is the Science of Comparative Politics Possible? In The Oxford Handbook of Comparative Politics , edited by Boix Boix, C. and Stokes, S. C., Oxford Handbooks Online.
Rehm, P. 2009. “Risks and Redistribution an Individual-Level Analysis.” Comparative Political Studies 42(7):855881.
Rossi, P. 2014. Bayesian Non- and Semi-Parametric Methods and Applications . Princeton, NJ: Princeton University Press.
Rossi, P. E., Allenby, G. M., and McCulloch, R.. 2006. Bayesian Statistics and Marketing . Chichester: John Wiley & Sons.
Rueda, D., and Stegmueller, D.. 2016. “The Externalities of Inequality: Fear of Crime and Preferences for Redistribution in Western Europe.” American Journal of Political Science 60(2):472489.
Samuels, M. L. 1993. “Simpson’s Paradox and Related Phenomena.” Journal of the American Statistical Association 88(421):8188.
Sethuraman, J. 1994. “A Constructive Definition of Dirichlet Priors.” Statistica Sinica 4:639650.
Shahbaba, B., and Radford, N.. 2009. “Nonlinear Models Using Dirichlet Process Mixtures.” Journal of Machine Learning Research 10(Aug):18291850.
Shayo, M. 2009. “A Model of Social Identity with an Application to Political Economy: Nation, Class, and Redistribution.” American Political Science Review 103(02):147174.
Simpson, E. H. 1951. “The Interpretation of Interaction in Contingency Tables.” Journal of the Royal Statistical Society. Series B (Methodological) 13(2):238241.
Spirling, A., and Quinn, K.. 2010. “Identifying Intraparty Voting Blocs in the UK House of Commons.” Journal of the American Statistical Association 105(490):447457.
Stegmueller, D. 2013. “Modeling Dynamic Preferences: A Bayesian Robust Dynamic Latent Ordered Probit Model.” Political Analysis 21(3):314333.
Stokes, S. C. 2014. “A Defense of Observational Research.” In Field Experiments and their Critics: Essays on the Uses and Abuses of Experimentation in the Social Sciences , edited by Teele, D. L., 3357. New Haven, CT: Yale University Press.
Svallfors, S. 1997. “Worlds of Welfare and Attitudes to Redistribution: A Comparison of Eight Western Nations.” European Sociological Review 13(3):283304.
Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M.. 2006. “Hierarchical Dirichlet Processes.” Journal of the American Statistical Association 101:15661581.
Tokdar, S. T. 2006. “Posterior Consistency of Dirichlet Location-Scale Mixture of Normals in Density Estimation and Regression.” Sankhyā: The Indian Journal of Statistics 68(1):90110.
Traunmuller, R., Murr, A., and Gill, J.. 2015. “Modeling Latent Information in Voting Data with Dirichlet Process Priors.” Political Analysis 23(1):1, http://dx.doi.org/10.1093/pan/mpu018.
Verbeke, G., and Lesaffre, E.. 1997. “The Effect of Misspecifying the Random-Effects Distribution in Linear Mixed Models for Longitudinal Data.” Computational Statistics & Data Analysis 23(4):541556.
Villarroel, L., Marshall, G., and Barón, A. E.. 2009. “Cluster Analysis Using Multivariate Mixed Effects Models.” Statistics in Medicine 28(20):25522565.
Walker, S. G. 2007. “Sampling the Dirichlet Mixture Model with Slices.” Communications in Statistics - Simulation and Computation 36(1):4554.
Woodridge, J. M. 2002. Econometric Analysis of Cross-Sectional and Panel Data . Cambridge and London: MIT Press.
Yule, G. U. 1903. “Notes on the Theory of Association of Attributes in Statistics.” Biometrika 2(2):121134.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Political Analysis
  • ISSN: 1047-1987
  • EISSN: 1476-4989
  • URL: /core/journals/political-analysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Ferrari supplementary material
Ferrari supplementary material 1

 Unknown (10.7 MB)
10.7 MB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed