Skip to main content Accessibility help
×
Home

Development and characterization of Triticum turgidumAegilops umbellulata amphidiploids

  • Zhongping Song (a1), Shoufen Dai (a1), Yanni Jia (a1), Li Zhao (a1), Liangzhu Kang (a1), Dengcai Liu (a1), Yuming Wei (a1), Youliang Zheng (a1) and Zehong Yan (a1)...

Abstract

The U genome of Aegilops umbellulata is an important basic genome of genus Aegilops. Direct gene transfer from Ae. umbellulata into wheat is feasible but not easy. Triticum turgidumAe. umbellulata amphidiploids can act as bridges to circumvent obstacles involving direct gene transfer. Seven T. turgidumAe. umbellulata amphidiploids were produced via unreduced gametes for spontaneous doubling of chromosomes of triploid T. turgidumAe. umbellulata F1 hybrid plants. Seven pairs of U chromosomes of Ae. umbellulata were distinguished by fluorescence in situ hybridization (FISH) probes pSc119.2/(AAC)5 and pTa71. Polymorphic FISH signals were detected in three (1U, 6U and 7U) of seven U chromosomes of four Ae. umbellulata accessions. The chromosomes of the tetraploid wheat parents could be differentiated by probes pSc119.2 and pTa535, and identical FISH signals were observed among the three accessions. All the parental chromosomes of the amphidiploids could be precisely identified by probe combinations pSc119.2/pTa535 and pTa71/(AAC)5. The T. turgidumAe. umbellulata amphidiploids possess valuable traits for wheat improvement, such as strong tillering ability, stripe rust resistance and seed size-related traits. These materials can be used as media in gene transfers from Ae. umbellulata into wheat.

Copyright

Corresponding author

*Corresponding author. E-mail: zhyan104@163.com

Footnotes

Hide All

Contributed equally to this work.

Footnotes

References

Hide All
Badaeva, ED, Friebe, B and Bikram, SG (1996) Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome 39: 293306.
Bansal, M, Kaur, S, Dhaliwal, HS, Bains, NS, Bariana, HS, Chhuneja, P and Bansal, UK (2017) Mapping of Aegilops umbellulata-derived leaf rust and stripe rust resistance loci in wheat. Plant Pathology 66: 3844.
Blanco, A, Simeone, R and Resta, P (1987) The addition of Dasypyrum villosum (L.) Candargy chromosomes to durum wheat (Triticum durum Desf.). Theoretical and Applied Genetics 74: 328333.
Cakmak, I, Tolay, I, Özkan, H, Özdemir, A and Braun, HJ (1999) Variation in zinc efficiency among and within Aegilops species. Journal of Plant Nutrition and Soil Science 162: 257262.
Chhuneja, P, Kaur, S, Goel, RK, Aghaee-Sarbarzeh, M, Prashar, M and Dhaliwal, HS (2008) Transfer of leaf rust and stripe rust resistance from Aegilops umbellulata Zhuk. to bread wheat (Triticum aestivum l.). Genetic Resources and Crop Evolution 55: 849859.
Cuadrado, Á and Jouve, N (2010) Chromosomal detection of simple sequence repeats (SSRs) using nondenaturing FISH (ND-FISH). Chromosoma 119: 495503.
Dai, SF, Zhao, L, Xue, XF, Jia, YN, Liu, DC, Pu, ZJ, Zheng, YL and Yan, ZH (2015) Analysis of high-molecular-weight glutenin subunits in five amphidiploids and their parental diploid species Aegilops umbellulata and Aegilops uniaristata. Plant Genetic Resources: Characterization and Utilization 13: 186189.
Edae, EA, Olivera, PD, Jin, Y and Rouse, MN (2017) Genotyping-by-sequencing facilitates a high-density consensus linkage map for Aegilops umbellulata, a wild relative of cultivated wheat. G3, Genes, Genomes, Genetics 7: 15511561.
Hadzhiivanova, B, Bozhanova, B and Dechev, D (2012) Interspecific hybridization between durum wheat and Aegilops umbellulata (Zhuk.). Bulgarian Journal of Agricultural Science 18: 713721.
Hao, M, Luo, JT, Yang, M, Zhang, LQ, Yan, ZH, Yuan, ZW, Zheng, YL, Zhang, HG and Liu, DC (2011) Comparison of homoeologous chromosome pairing between hybrids of wheat genotypes Chinese Spring ph1b and Kaixian-luohanmai with rye. Genome 54: 959964.
Hao, M, Luo, JT, Zhang, LQ, Yuan, ZW, Yang, YW, Wu, M, Chen, WJ, Zheng, YL, Zhang, HG and Liu, DC (2013) Production of hexaploid triticale by a synthetic hexaploid wheat-rye hybrid method. Euphytica 193: 347357.
Hao, M, Luo, J, Zeng, D, Zhang, L, Ning, S, Yuan, Z, Yan, Z, Zhang, H, Zheng, Y, Feuillet, C, Choulet, F, Yen, Y, Zhang, L and Liu, D (2014) QTug.sau-3B is a major quantitative trait locus for wheat hexaploidization. G3, Genes, Genomes, Genetics 4: 19431953.
Jauhar, PP (2003) Formation of 2n gametes in durum wheat haploids: sexual polyploidization. Euphytica 133: 8194.
Jauhar, PP (2007) Meiotic restitution in wheat polyhaploids (amphiploids): a potent evolutionary force. Journal of Heredity 98: 188193.
Kato, A (1999) Air drying method using nitrous oxide for chromosome counting in maize. Biotechnic & Histochemistry 74: 160166.
Komuro, S, Endo, R, Shikata, K and Kato, A (2013) Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure. Genome 56: 131137.
Kwiatek, M, Wiśniewska, H and Apolinarska, B (2013) Cytogenetic analysis of Aegilops chromosomes, potentially usable in triticale (×Triticosecale witt.) breeding. Journal of Applied Genetics 54: 147155.
Mirzaghaderi, G, Houben, A and Badaeva, ED (2014) Molecular-cytogenetic analysis of Aegilops triuncialis and identification of its chromosomes in the background of wheat. Molecular Cytogenetics 7: 91.
Sears, ER (1956) The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symposium in Biology 9: 121.
Storme, DS and Geelen, D (2013) Sexual polyploidization in plants-cytological mechanisms and molecular regulation. New Phytologist 198: 670684.
Tang, ZX, Yang, ZJ and Fu, SL (2014) Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. Journal of Applied Genetics 55: 313318.
Tiwari, VK, Rawat, N, Neelam, K, Randhawa, GS, Singh, K, Chhuneja, P and Dhaliwal, HS (2008) Development of Triticum trugidum ssp. durum-Aegilops longissima amphiploids with high iron and zinc content through unreduced gamete formation in F 1 hybrids. Genome 51: 757766.
Vardi, A and Zohary, D (1967) Introgression in wheat via triploid hybrids. Heredity 22: 541560.
Wang, SW, Yin, LN, Tanaka, H, Tanaka, K and Tsujimoto, H (2011) Wheat-Aegilops chromosome addition lines showing high iron and zinc contents in grains. Breeding Science 61: 189195.
Wellings, C and Bariana, H (2004) Assessment scale for recording stripe rust responses in field trials. Cereal Rust Report Season 2: 12.
Zaharieva, M, Cortéz, A, Rosas, V, Cano, S, Delgado, R and Mujeeb-kazi, A (2003) Triticum durum × Aegilops umbellulata hybridization. Annual Wheat Newsletter 49: 7173.
Zhang, H, Jia, J, Gale, MD and Devos, KM (1998) Relationships between the chromosomes of Aegilops umbellulata and wheat. Theoretical and Applied Genetics 96: 6975.
Zhang, LQ, Yen, Y, Zheng, YL and Liu, DC (2007) Meiotic restriction in emmer wheat is controlled by one or more nuclear genes that continue to function in derived lines. Sexual Plant Reproduction 20: 159166.
Zhang, LQ, Yan, ZH, Dai, SF, Chen, QJ, Yuan, ZW, Zheng, YL and Liu, DC (2008) The crossability of Triticum turgidum with Aegilops tauschii. Cereal Research Communications 37: 417427.
Zhang, LQ, Liu, DC, Zheng, YL, Yan, ZH, Dai, SF, Li, YF, Jiang, Q, Ye, YQ and Yen, Y (2010) Frequent occurrence of unreduced gametes in Triticum turgidumAegilops tauschii hybrids. Euphytica 172: 285294.
Zhu, ZD, Zhou, RH, Kong, XY, Dong, YC and Jia, JZ (2006) Microsatellite marker identification of a Triticum aestivum-Aegilops umbellulata substitution line with powdery mildew resistance. Euphytica 150: 149153.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Song et al. supplementary material
Song et al. supplementary material 1

 Unknown (2.7 MB)
2.7 MB
UNKNOWN
Supplementary materials

Song et al. supplementary material
Song et al. supplementary material 2

 Unknown (2.2 MB)
2.2 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed