Skip to main content Accessibility help
×
Home
Hostname: page-component-54cdcc668b-tx8dt Total loading time: 0.414 Render date: 2021-03-09T09:00:08.071Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Molecular characterization of oil palm Elaeis guineensis Jacq. materials from Cameroon

Published online by Cambridge University Press:  04 January 2013

Diana Arias
Affiliation:
Oil Palm Biology and Breeding Research Program, Colombian Oil Palm Research Center – Cenipalma, Street 21, No. 42-55, Bogota, Colombia
Carmenza Montoya
Affiliation:
Oil Palm Biology and Breeding Research Program, Colombian Oil Palm Research Center – Cenipalma, Street 21, No. 42-55, Bogota, Colombia
Hernán Romero
Affiliation:
Oil Palm Biology and Breeding Research Program, Colombian Oil Palm Research Center – Cenipalma, Street 21, No. 42-55, Bogota, Colombia Department of Biology, Universidad Nacional de Colombia, Cundinamarca 111321, Colombia
Corresponding
E-mail address:

Abstract

The narrow genetic base of existing commercial oil palm cultivars has prompted oil palm breeders to give increased importance to augmenting these genetic resources because the sustainable development of the crop depends largely on the availability of genetic diversity and its use. Therefore, the purpose of this study was to conduct a molecular characterization of an ex situ collection of oil palm Elaeis guineensis Jacq. populations from the Republic of Cameroon using microsatellite molecular markers. Overall, 31 simple sequence repeats were polymorphic, with a total of 223 alleles, 78.4% of which were found at low frequency. The total genetic diversity was relatively high (HT= 0.673). The genetic differentiation between geographical regions was low (GST= 0.023, P= 0.001), and between families it was high (GST= 0.166, P= 0.001), showing greater variation between families than among geographical regions. The molecular data indicate that genetic diversity among the genotypes evaluated is mainly distributed within regions, suggesting that there is no isolation by geographical distance and that all the sampled individuals form a single diverse population. Therefore, it was concluded that a relatively low number of accessions (120 in the analysed case) that includes at least one representative of each family would allow us to efficiently collect almost the entire genetic diversity of Cameroon within the collection studied. This will allow for the efficient use of genetic resources and a reduction in morpho-agronomic characterization costs.

Type
Research Article
Copyright
Copyright © NIAB 2013 

Access options

Get access to the full version of this content by using one of the access options below.

References

Arias, DM, Daza, ES, Montoya, C and Romero, HM (2011) Genetic collection of oil palm materials from Cameroon. PALMAS 32: 2737.Google Scholar
Bakoumé, C, Wickneswari, R, Raijanaidu, N, Kushairi, A, Amblard, P and Billotte, N (2007) Allelic diversity of natural oil palm (Elaeis guineensis Jacq.) populations detected by microsatellites markers. Implication in conservation. PALMAS 28: 149158.Google Scholar
Barcelos, E, Amblard, P, Berthaud, J and Seguin, M (2002) Genetic diversity and relationship in American and African oil palm as revealed by RFLP and AFLP molecular markers. Pesquisa Agropecuaria Brasileira 37: 11051114.CrossRefGoogle Scholar
Billotte, N, Marseillac, N, Risterucci, AM, Adon, B, Brottier, P, Baurens, FC, Singh, R, Herrán, A, Asmady, H, Billot, C, Amblard, P, Durand-Gasselin, T, Courtois, B, Asmono, D, Cheah, SC, Rohde, W, Ritter, E and Charrier, A (2005) Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq). Theoretical and Applied Genetics 110: 754765.CrossRefGoogle Scholar
Billotte, N, Risterucci, AM, Barcelos, E, Noyer, JL, Amblard, P and Baurens, FC (2001) Development, characterization, and across-taxa utility of oil palm (Elaeis guineensis Jacq) microsatellite markers. Genome 44: 413425.CrossRefGoogle Scholar
Brown, AHD (1989) Core collections: a practical approach to genetic resources management. Genome 31: 818824.CrossRefGoogle Scholar
Buchert, GP, Rajora, OP, Hood, JV and Dancik, BP (1997) Effects of harvesting on genetic diversity in old-growth eastern white pine (Pinus strobus L.) in Ontario, Canada. Conservation Biology 11: 747758.CrossRefGoogle Scholar
Cochard, B, Adon, B, Rekima, S, Billotte, N, Desmier de Chenon, R, Koutou, A, Nouy, B, Omoré, A, Purba, AR, Glazsmann, JC and Noyer, JL (2009) Geographic and genetic structure of African oil palm diversity suggest new approaches to breeding. Tree Genetics & Genomes 5: 493504.CrossRefGoogle Scholar
Corley, RHV and Tinker, PB (2003) The Oil Palm. Oxford: Blackwell Publishers, p. 562.CrossRefGoogle Scholar
Epperson, BK (2003) Geographical Genetics. Princeton, NJ: Princeton University Press, p. 356.Google Scholar
Excoffier, L and Heckel, G (2006) Computer programs for population genetics data analysis: a survival guide. Nature Reviews Genetics 7: 745758.CrossRefGoogle ScholarPubMed
Forero, DC, Hormaza, P and Romero, HM (2012) Phenological growth stages of African oil palm (Elaeis guineensis). Annals of Applied Biology 160: 5665.CrossRefGoogle Scholar
Goudet J (2002) Institute of Ecology. Biology Building, UNIL Software (FSTAT), Version 2.9.3.2. http://www2.unil.ch/popgen/softwares/fstat.htm.Google Scholar
Hayati, A, Wickneswari, R, Maizura, I and Rajanaidu, N (2004) Genetic diversity of oil palm (Elaeis guineensis Jacq) germplasm collections from Africa: implications from improvement and conservation of genetic resources. Theoretical and Applied Genetics 108: 12741284.CrossRefGoogle ScholarPubMed
Hedrick, PW (2005) Genetics of Populations, 3rd edn.Boston: Jones and Bartlett, p. 737.Google Scholar
Kalia, RK, Rai, MK, Kalia, S, Singh, R and Dhawan, AK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177: 309334.CrossRefGoogle Scholar
Kularatne, RS, Shah, FH and Rajanaidu, N (2001) The evaluation of genetic diversity of Deli dura and African oil palm germplasm collection by AFLP technique. Tropical Agriculture Research 13: 112.Google Scholar
Laurentin, H (2009) Data analysis for molecular characterization of plant genetic resources. Genetic Resources and Crop Evolution 56: 277292.CrossRefGoogle Scholar
Luna, R, Epperson, B and Oyama, K (2005) Spatial genetic structure of two sympatric neotropical palms with contrasting life histories. Heredity 95: 298305.CrossRefGoogle ScholarPubMed
Maizura, I, Rajanaidu, N, Zakri, A and Cheah, S (2006) Assessment of genetic diversity in oil palm (Elaeis guineensis Jacq) using restriction fragment length polymorphism (RFLP). Genetic Resources and Crop Evolution 53: 187195.Google Scholar
Mantel, N (1967) The detection of disease clustering and a generalized regression approach. Cancer Research 27: 209220.Google Scholar
Marshall, DR and Brown, AH (1975) Optimum sampling strategies in genetic conservation. In: Franked, OH and Hawkes, JG (eds) Crop Genetic Resources for Today and Tomorrow. Cambridge, London: Cambridge University Press, pp. 5380.Google Scholar
Maxted, N, Ford Lloyd, BV, Jury, SL, Kell, SP and Scholten, MA (2006) Towards a definition of a crop wild relative. Biodiversity and Conservation 15: 26732685.CrossRefGoogle Scholar
Maxted, N, Scholten, MA, Codd, R and Ford Lloyd, BV (2007) Creation and use of a national inventory of crop wild relatives. Biological Conservation 140: 142159.CrossRefGoogle Scholar
Montoya, C, Arias, DM, Rey, L and Rocha, PJ (2005) Caracterización molecular de materiales de E. guineensis Jacq. Procedentes de Angola. Fitotecnia Colombiana 5: 110.Google Scholar
Nei, M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583590.Google ScholarPubMed
Nei, M (1987) Molecular Evolutionary Genetics. New York: Colombia Univeristy Press.Google Scholar
Nei, M and Li, WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences 76: 52695273.CrossRefGoogle ScholarPubMed
Peakall, R and Smouse, P (2006) GenAlEx6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288295. Available athttp://biology.anu.edu.au/GenAlEx/Welcome.html.CrossRefGoogle Scholar
Perrier X, Jacquemoud-Collet JP (2006) Software (DARwin). Available at http://darwin.cirad.fr./darwin.Google Scholar
Rajora, OP, Rahman, MH, Buchert, GP and Dancik, BP (2000) Microsatellite DNA analysis of genetic efforts of harvesting in old-growth eastern white pine (Pinus strobus) in Ontario, Canada. Molecular Ecology 9: 339348.CrossRefGoogle Scholar
Rohlf, FJ (1998) NTSYSpc: Numerical Taxonomy and Multivariate Analysis System, Version 2.01. New York, NY: Setauket.Google Scholar
SAS (1995) The SAS System for Windows, Release 6.11. Cary, NC: SAS Institute Inc.Google Scholar
Singh, R, Mohd, N, Ting, N, Rosli, R, Tan, S, Leslie, E, Ithnin, M and Cheah, S (2008) Exploiting an oil palm EST database for the development of gene-derived SSR markers and their exploitation for assessment of genetic diversity. Biologic 63: 227235.Google Scholar
Slatkin, (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139: 457462.Google ScholarPubMed
Syed, RA (1979) Studies on oil palm pollination by insects. Bulletin of Entomological Research 69: 213214.CrossRefGoogle Scholar
Wright, S (1951) The genetical structure of populations. Annual Eugen 15: 323354.CrossRefGoogle ScholarPubMed
Wright, S (1965) The interpretation of population structure by F-statistics with special regard to system of mating. Evolution 19: 395420.CrossRefGoogle Scholar

Arias Supplementary Material

Appendix

File 18 KB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 5
Total number of PDF views: 37 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 9th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Molecular characterization of oil palm Elaeis guineensis Jacq. materials from Cameroon
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Molecular characterization of oil palm Elaeis guineensis Jacq. materials from Cameroon
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Molecular characterization of oil palm Elaeis guineensis Jacq. materials from Cameroon
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *