Skip to main content Accessibility help
×
Home

Evaluation of tomato accessions for flavour and flavour-contributing components

Published online by Cambridge University Press:  03 December 2012

Dilip R. Panthee
Affiliation:
Department of Horticultural Science, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC 28759, USA
Joanne A. Labate
Affiliation:
Plant Genetic Resources Unit, USDA-ARS, Geneva, NY 14456, USA
Larry D. Robertson
Affiliation:
Plant Genetic Resources Unit, USDA-ARS, Geneva, NY 14456, USA
Corresponding
E-mail address:

Abstract

Flavour is one of the most highly demanded consumer traits of tomato at present; poor flavour is one of the most commonly heard complaints associated with modern varieties of tomato. In order to combine flavour with other desirable fruit traits in improved cultivars, it is important to determine how much variability exists in the crucial compounds that contribute most to flavour. The objective of the present study was to determine the variability of flavour-contributing components including total soluble solids (TSS) and total titratable acids (TTA) among other subjective traits related to flavour in a core collection of tomato accessions. The core collection was comprised of 173 tomato accessions with a wide genetic background from the United States Department of Agriculture (USDA), Agricultural Research Services (ARS) Plant Genetic Resources Unit repository. The TTA varied from 0.20 to 0.64%, whereas the TSS ranged from 3.4 to 9.0%, indicating the availability of broad variation for these traits. Rinon (PI 118783), Turrialba, Purple Calabash and LA2102 were among the high TTA (>0.45%) containing accessions, whereas those with high TSS (>7.0%) were AVRDC#6, Sponzillo and LA2102. A positive correlation of overall flavour with TTA (r= 0.33; P< 0.05) and TSS (r= 0.37; P< 0.05) indicated that these two components play an important role in determining the overall flavour in tomato. Subjectively measured other traits including fruity odour and fruity flavour had positive correlations with overall flavour. Overall flavour is discussed in the context of other traits including fruit firmness. Information obtained from this study may be useful for tomato breeders aiming to improve tomato flavour.

Type
Research Article
Copyright
Copyright © NIAB 2012 

Access options

Get access to the full version of this content by using one of the access options below.

References

Abegaz, EG, Tandon, KS, Scott, JW, Baldwin, EA and Shewfelt, RL (2004) Partitioning taste from aromatic flavor notes of fresh tomato (Lycopersicon esculentum, Mill) to develop predictive models as a function of volatile and nonvolatile components. Postharvest Biology and Technology 34: 227235.CrossRefGoogle Scholar
Auerswald, H, Peters, P, Bruckner, B, Krumbein, A and Kuchenbuch, R (1999a) Sensory analysis and instrumental measurements of short-term stored tomatoes (Lycopersicon esculentum Mill.). Postharvest Biology and Technology 15: 323334.CrossRefGoogle Scholar
Auerswald, H, Schwarz, D, Kornelson, C, Krumbein, A and Bruckner, B (1999b) Sensory analysis, sugar and acid content of tomato at different EC values of the nutrient solution. Scientia Horticulturae 82: 227242.CrossRefGoogle Scholar
Baldwin, EA, Scott, JW, Einstein, MA, Malundo, TMM, Carr, BT, Shewfelt, RL and Tandon, KS (1998) Relationship between sensory and instrumental analysis for tomato flavor. Journal of the American Society for Horticultural Science 123: 906915.Google Scholar
Baranska, M, Schutz, W and Schulz, H (2006) Determination of lycopene and beta-carotene content in tomato fruits and related products: comparison of Ft-Raman, ATR-IR, and NIR spectroscopy. Analytical Chemistry 78: 84568461.doi:10.1021/ac061220j.CrossRefGoogle ScholarPubMed
Bezman, Y, Mayer, F, Takeoka, GR, Buttery, RG, Ben-Oliel, G, Rabinowitch, HD and Naim, M (2003) Differential effects of tomato (Lycopersicon esculentum Mill) matrix on the volatility of important aroma compounds. Journal of Agricultural and Food Chemistry 51: 722726.CrossRefGoogle ScholarPubMed
Buttery, RG, Takeoka, GR, Naim, M, Rabinowitch, H and Nam, Y (2001) Analysis of furaneol in tomato using dynamic headspace sampling with sodium sulfate. Journal of Agricultural and Food Chemistry 49: 43494351.doi: 10.1021/jf0105236.CrossRefGoogle ScholarPubMed
Causse, M, Buret, M, Robini, K and Verschave, P (2003) Inheritance of nutritional and sensory quality traits in fresh market tomato and relation to consumer preferences. Journal of Food Science 68: 23422350. doi:10.1111/j.1365-2621.2003.tb05770.x.CrossRefGoogle Scholar
Davidovich-Rikanati, R, Sitrit, Y, Tadmor, Y, Iijima, Y, Bilenko, N, Bar, E, Carmona, B, Fallik, E, Dudai, N, Simon, JE, Pichersky, E and Lewinsohn, E (2007) Enrichment of tomato flavor by diversion of the early plastidial terpenoid pathway. Nature Biotechnology 25: 899901.CrossRefGoogle ScholarPubMed
Davies, JN and Hobson, GE (1981) The constituents of tomato fruit – the influence of environment, nutrition, and genotype. CRC Critical Reviews in Food Science and Nutrition 15: 205280.CrossRefGoogle ScholarPubMed
Ercolano, MR, Carli, P, Soria, A, Cascone, A, Fogliano, V, Frusciante, L and Barone, A (2008) Biochemical, sensorial and genomic profiling of traditional Italian tomato varieties. Euphytica 164: 571582.CrossRefGoogle Scholar
FAOSTAT (2005) FAO Statistical Databases. Food and Agriculture Organization of the United Nations, Statistics Division. Available at http://faostat3.fao.org/home/index.html.Google Scholar
Hyman, JR, Gaus, J and Foolad, MR (2004) A rapid and accurate method for estimating tomato lycopene content by measuring chromaticity values of fruit puree. Journal of the American Society for Horticultural Science 129: 717723.Google Scholar
Kemble, JM (ed.) (2009) Southeastern Vegetable Crops Handbook. Auburn, AL: Auburn University.Google Scholar
Krumbein, A, Peters, P and Bruckner, B (2004) Flavour compounds and a quantitative descriptive analysis of tomatoes (Lycopersicon esculentum Mill.) of different cultivars in short-term storage. Postharvest Biology and Technology 32: 1528. doi:10.1016/j.postharvbio.2003.10.004.CrossRefGoogle Scholar
Labate, JA, Sheffer, SM, Balch, T and Robertson, LD (2011) Diversity and population structure in a geographic sample of tomato accessions. Crop Science 51: 10681079.CrossRefGoogle Scholar
Magee, RL, Caporaso, F and Prakash, A (2003) Effects of exogenous calcium salt treatments on inhibiting irradiation-induced softening in diced roma tomatoes. Journal of Food Science 68: 24302435. doi:10.1111/j.1365-2621.2003.tb07041.x.CrossRefGoogle Scholar
Sadler, GD (1998) pH and titratable acidity. In: Nielsen, SS (ed.) Food Analysis. Gaithersburg, MD: Aspen Publishers, Inc., pp. 99118.Google Scholar
SAS Institute Inc. (2007) The SAS System, Version 9.1.3 for Windows. 9th edn.Cary, NC: SAS Institute.Google Scholar
Sinesio, F, Cammareri, M, Moneta, E, Navez, B, Peparaio, M, Causse, M and Grandillo, S (2010) Sensory quality of fresh French and Dutch market tomatoes: a preference mapping study with Italian consumers. Journal of Food Science 75: S55S67.CrossRefGoogle ScholarPubMed
Tamura, K, Dudley, J, Nei, M and Kumar, S (2007) MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 15961599.CrossRefGoogle ScholarPubMed
Vogel, JT, Tieman, DM, Sims, CA, Odabasi, AZ, Clark, DG and Klee, HJ (2010) Carotenoid content impacts flavor acceptability in tomato (Solanum lycopersicum). Journal of the Science of Food and Agriculture 90: 22332240.CrossRefGoogle Scholar
Wang, YT, Liu, RL, Huang, SW and Jin, JY (2009) Effects of potassium application on flavor compounds of cherry tomato fruits. Journal of Plant Nutrition 32: 14511468. doi:10.1080/01904160903092663.CrossRefGoogle Scholar

Panthee Supplementary Material

Appendix

File 94 KB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 13
Total number of PDF views: 52 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 25th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-fv2z2 Total loading time: 0.277 Render date: 2021-01-25T05:15:31.926Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Evaluation of tomato accessions for flavour and flavour-contributing components
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Evaluation of tomato accessions for flavour and flavour-contributing components
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Evaluation of tomato accessions for flavour and flavour-contributing components
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *