Skip to main content Accessibility help

Neuroanatomical Correlates of Hierarchical Personality Traits in Chimpanzees: Associations with Limbic Structures

  • Robert D. Latzman (a1), Sarah T. Boysen (a2) and Steven J. Schapiro (a3) (a4)


A converging literature has revealed the existence of a set of largely consistent, hierarchically organized personality traits, that is broader traits are able to be differentiated into more fine-grained traits, in both humans and chimpanzees. Despite recent work suggesting a neural basis to personality in chimpanzees, little is known with regard to the involvement of limbic structures (i.e., amygdala and hippocampus), which are thought to play important roles in emotion. Using saved maximum likelihood estimated exploratory factor scores (two to five factors) in the context of a series of path analyses, the current study examined associations among personality dimensions across various levels of the personality hierarchy and individual variability of amygdala and hippocampal grey matter (GM) volume in a sample of captive chimpanzees (N=191). Whereas results revealed no association between personality dimensions and amygdala volume, a more nuanced series of associations emerged between hippocampal GM volume and personality dimensions at various levels of the hierarchy. Hippocampal GM volume associated most notably with Alpha (a dimension reflecting a tendency to behave in an undercontrolled and agonistic way) at the most basic two-factor level of the hierarchy; associated positively with Disinhibition at the next level of the hierarchy (“Big Three”); and finally, associated positively with Impulsivity at the most fine-grained level (“five-factor model”) of the hierarchy. Findings underscore the importance of the hippocampus in the neurobiological foundation of personality, with support for its regulatory role of emotion. Further, results suggest the importance of the distinction between structure and function, particularly with regard to the amygdala.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Neuroanatomical Correlates of Hierarchical Personality Traits in Chimpanzees: Associations with Limbic Structures
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Neuroanatomical Correlates of Hierarchical Personality Traits in Chimpanzees: Associations with Limbic Structures
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Neuroanatomical Correlates of Hierarchical Personality Traits in Chimpanzees: Associations with Limbic Structures
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.

Corresponding author

Author for correspondence: Robert D. Latzman, E-mail:


Hide All
Adolphs, R., Tranel, D. Damasio, A. R. (1998). The human amygdala in social judgment. Nature, 393(6684), 470474.
Adolphs, R., Tranel, D., Damasio, H. Damasio, A. (1994). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature, 372(6507), 669672.
Aghajani, M., Veer, I. M., Van Tol, M.-J., Aleman, A., Van Buchem, M. A., Veltman, D. J., … van der Wee, N. J. (2014). Neuroticism and extraversion are associated with amygdala resting-state functional connectivity. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 836848.
Allen, T. A. DeYoung, C. G. (2017). Personality neuroscience and the five factor model. In T. A. Widiger (Ed.), Oxford handbook of the five factor model (pp. 319352). New York, NY: Oxford University Press.
Amaral, D. G. (2002). The primate amygdala and the neurobiology of social behavior: Implications for understanding social anxiety. Biological Psychiatry, 51(1), 1117.
Antoniadis, E. A., Winslow, J. T., Davis, M. Amaral, D. G. (2007). Role of the primate amygdala in fear-potentiated startle: Effects of chronic lesions in the rhesus monkey. Journal of Neuroscience, 27(28), 73867396.
Barros-Loscertales, A., Meseguer, V., Sanjuan, A., Belloch, V., Parcet, M., Torrubia, R., & Avila, C. (2006). Behavioral inhibition system activity is associated with increased amygdala and hippocampal gray matter volume: A voxel-based morphometry study. Neuroimage, 33(3), 10111015.
Bilir, E., Craven, W., Hugg, J., Gilliam, F., Martin, R., Faught, E., & Kuzniecky, R. (1998). Volumetric MRI of the limbic system: Anatomic determinants. Neuroradiology, 40(3), 138144.
Blatchley, B. J. Hopkins, W. D. (2010). Subgenual cingulate cortex and personality in chimpanzees (Pan troglodytes). Cognitive, AffectiveBehavioral Neuroscience, 10(3), 414421.
Bouchard, T. J. (2004). Genetic influence on human psychological traits: A survey. Current Directions in Psychological Science, 13(4), 148151.
Bouchard, T. J. McGue, M. (2003). Genetic and environmental influences on human psychological differences. Developmental Neurobiology, 54(1), 445.
Canli, T., Sivers, H., Whitfield, S. L., Gotlib, I. H. Gabrieli, J. D. (2002). Amygdala response to happy faces as a function of extraversion. Science, 296(5576), 21912191. https/
Caspi, A., Houts, R. M., Belsky, D. W., Goldman-Mellor, S. J., Harrington, H., Israel, S., … Poulton, R. (2014). The p factor: One general psychopathology factor in the structure of psychiatric disorders? Clinical Psychological Science, 2(2), 119137.
The Chimpanzee Sequencing and Analysis Consortium (2005). Initial sequence of the chimpanzee genome and comparison with the human genome. Nature, 437, 69–87.
Clark, L. A. (2005). Temperament as a unifying basis for personality and psychopathology. Journal of Abnormal Psychology, 114(4), 505521.
Clark, L. A. Watson, D. (2008). An organizing paradigm for trait psychology. In O. P. John, R.W. Robins, & L. A. Pervin (Eds.), Handbook of personality: Theory and research (pp. 265–286). New York, NY: Guilford Press.
Cremers, H., van Tol, M.-J., Roelofs, K., Aleman, A., Zitman, F. G., van Buchem, M. A., … van der Wee, N. J. (2011). Extraversion is linked to volume of the orbitofrontal cortex and amygdala. PLoS One, 6(12), e28421.
Cunningham, W. A., Van Bavel, J. J. Johnsen, I. R. (2008). Affective flexibility: Evaluative processing goals shape amygdala activity. Psychological Science, 19(2), 152160.
Davidson, R. J., Jackson, D. C. Kalin, N. H. (2000). Emotion, plasticity, context, and regulation: Perspectives from affective neuroscience. Psychological Bulletin, 126(6), 890909.
De Bellis, M. D., Keshavan, M. S., Clark, D. B., Casey, B., Giedd, J. N., Boring, A. M., … Ryan, N. D. (1999). Developmental traumatology part II: Brain development. Biological Psychiatry, 45(10), 12711284.
DeYoung, C. G. (2006). Higher-order factors of the Big Five in a multi-informant sample. Journal of Personality and Social Psychology, 91(6), 11381151.
DeYoung, C. G. (2010). Toward a theory of the Big Five. Psychological Inquiry, 21(1), 2633. ttps://
DeYoung, C. G. Gray, J. R. (2009). Personality neuroscience: Explaining individual differences in affect, behaviour and cognition. In P. J. Corr & G. Matthews (Eds.), The Cambridge handbook of personality psychology (pp. 323346). New York, NY: Cambridge University Press.
Digman, J. M. (1990). Personality structure: Emergence of the five-factor model. Annual Review of Psychology, 41(1), 417440.
Digman, J. M. (1997). Higher-order factors of the Big Five. Journal of Personality and Social Psychology, 73(6), 12461256.
Durbin, C. E. Hicks, B. M. (2014). Personality and psychopathology: A stagnant field in need of development. European Journal of Personality, 28(4), 362386.
Ecker, C., Rocha-Rego, V., Johnston, P., Mourao-Miranda, J., Marquand, A. Daly, E. M., the MRC AIMS Consortium. (2010). Investigating the predictive value of whole-brain structural MR scans in Autism: A pattern classification approach. NeuroImage, 49(1), 4456.
Fox, A. S., Oler, J. A., Tromp, D. P., Fudge, J. L. Kalin, N. H. (2015). Extending the amygdala in theories of threat processing. Trends in Neurosciences, 38(5), 319329.
Freeman, H. D., Brosnan, S. F., Hopper, L. M., Lambeth, S. P., Schapiro, S. J. Gosling, S. D. (2013). Developing a comprehensive and comparative questionnaire for measuring personality in chimpanzees using a simultaneous top‐down/bottom‐up design. American Journal of Primatology, 75(10), 10421053.
Freeman, H. D., Cantalupo, C. Hopkins, W. D. (2004). Asymmetries in the hippocampus and amygdala of chimpanzees (Pan troglodytes). Behavioral Neuroscience, 118(6), 14601465.
Freeman, H. D. Gosling, S. D. (2010). Personality in nonhuman primates: A review and evaluation of past research. American Journal of Primatology, 72(8), 653671.
Ge, Y., Grossman, R. I., Babb, J. S., Rabin, M. L., Mannon, L. J. Kolson, D. L. (2002). Age-related total gray matter and white matter changes in normal adult brain. Part I: Volumetric MR imaging analysis. American Journal of Neuroradiology, 23(8), 13271333.
Gosche, K. M., Mortimer, J. A., Smith, C. D., Markesbery, W. R. Snowdon, D. A. (2001). An automated technique for measuring hippocampal volumes from MR imaging studies. American Journal of Neuroradiology, 22(9), 16861689.
Gray, J. A. McNaughton, N. (2000). The neuropsychology of anxiety: An enquiry into the function of the septo-hippocampal system. New York, NY: Oxford University Press.
Gross, J. J. (1998). Antecedent-and response-focused emotion regulation: Divergent consequences for experience, expression, and physiology. Journal of Personality and Social Psychology, 74(1), 224237.
Gross, J. J. Jazaieri, H. (2014). Emotion, emotion regulation, and psychopathology: An affective science perspective. Clinical Psychological Science, 2(4), 387401.
Haas, B. W., Omura, K., Constable, R. T. Canli, T. (2007). Emotional conflict and neuroticism: Personality-dependent activation in the amygdala and subgenual anterior cingulate. Behavioral Neuroscience, 121(2), 249256.
Hariri, A. R., Bookheimer, S. Y. Mazziotta, J. C. (2000). Modulating emotional responses: Effects of a neocortical network on the limbic system. Neuroreport, 11(1), 4348.
Holmes, A. J., Lee, P. H., Hollinshead, M. O., Bakst, L., Roffman, J. L., Smoller, J. W., & Buckner, R. L. (2012). Individual differences in amygdala-medial prefrontal anatomy link negative affect, impaired social functioning, and polygenic depression risk. Journal of Neuroscience, 32(50), 1808718100.
Hopkins, W. D., & Latzman, R. D. (2017). Future research with captive chimpanzees in the USA: Integrating scientific programs with behavioral management. In S. J. Schapiro (Ed.), Handbook of primate behavioral management (pp. 139–156). Boca Raton, FL: CRC Press, Taylor & Francis.
Hopkins, W. D., Li, X., Crow, T. Roberts, N. (2017). Vertex-and atlas-based comparisons in measures of cortical thickness, gyrification and white matter volume between humans and chimpanzees. Brain Structure and Function, 222(1), 229245.
Hopkins, W. D., Lyn, H. Cantalupo, C. (2009). Volumetric and lateralized differences in selected brain regions of chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). American Journal of Primatology, 71(12), 988997.
Hopper, L. M., Price, S. A., Freeman, H. D., Lambeth, S. P., Schapiro, S. J. Kendal, R. L. (2014). Influence of personality, age, sex, and estrous state on chimpanzee problem-solving success. Animal Cognition, 17(4), 835847.
Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179185.
Iidaka, T., Matsumoto, A., Ozaki, N., Suzuki, T., Iwata, N., Yamamoto, Y., … Sadato, N. (2006). Volume of left amygdala subregion predicted temperamental trait of harm avoidance in female young subjects. A voxel-based morphometry study. Brain Research, 1125(1), 8593.
Kotov, R., Gamez, W., Schmidt, F. Watson, D. (2010). Linking “big” personality traits to anxiety, depressive, and substance use disorders: A meta-analysis. Psychological Bulletin, 136(5), 768821.
Kotov, R., Krueger, R. F., Watson, D., Achenbach, T. M., Althoff, R. R., Bagby, R. M., … Clark, L. A. (2017). The Hierarchical Taxonomy of Psychopathology (HiTOP): A dimensional alternative to traditional nosologies. Journal of Abnormal Psychology, 126(4), 454477.
Latzman, R. D., Freeman, H. D., Schapiro, S. J. Hopkins, W. D. (2015). The contribution of genetics and early rearing experiences to hierarchical personality dimensions in chimpanzees (Pan troglodytes). Journal of Personality and Social Psychology, 109(5), 889900.
Latzman, R. D., Green, L. M. Fernandes, M. A. (2017). The importance of chimpanzee personality research to understanding processes associated with human mental health. International Journal of Comparative Psychology, 30.
Latzman, R. D., & Hopkins, W. D. (2016). Avoiding a lost opportunity for psychological medicine: Importance of chimpanzee research to the NIH portfolio. Psychological Medicine, 46, 2445–2447.
Latzman, R. D., Hecht, L. K., Freeman, H. D., Schapiro, S. J. Hopkins, W. D. (2015). Neuroanatomical correlates of personality in chimpanzees (Pan troglodytes): Associations between personality and frontal cortex. NeuroImage, 123, 6371.
Latzman, R. D., Hopkins, W. D., Keebaugh, A. C. Young, L. J. (2014). Personality in chimpanzees (Pan troglodytes): Exploring the hierarchical structure and associations with the vasopressin V1A receptor gene. PLoS One, 9(4), e95741.
Latzman, R. D., Sauvigné, K. C. Hopkins, W. D. (2016). Translating chimpanzee personality to humans: Investigating the transportability of chimpanzee‐derived personality scales to humans. American Journal of Primatology, 78(6), 601609.
Latzman, R. D., Young, L. J. Hopkins, W. D. (2016). Displacement behaviors in chimpanzees (Pan troglodytes): A neurogenomics investigation of the RDoC Negative Valence Systems domain. Psychophysiology, 53(3), 355363.
Lewis, G., Panizzon, M. S., Eyler, L., Fennema-Notestine, C., Chen, C.-H., Neale, M. C., … Kremen, W. S. (2014). Heritable influences on amygdala and orbitofrontal cortex contribute to genetic variation in core dimensions of personality. NeuroImage, 103, 309315.
Li, L., Preuss, T. M., Rilling, J. K., Hopkins, W. D., Glasser, M. F., Kumar, B., … Hu, X. (2010). Chimpanzee (Pan troglodytes) precentral corticospinal system asymmetry and handedness: A diffusion magnetic resonance imaging study. PLoS One, 5(9), e12886.
Machado, C. J. Bachevalier, J. (2006). The impact of selective amygdala, orbital frontal cortex, or hippocampal formation lesions on established social relationships in rhesus monkeys (Macaca mulatta). Behavioral Neuroscience, 120(4), 761786.
Machado, C. J. Bachevalier, J. (2008). Behavioral and hormonal reactivity to threat: Effects of selective amygdala, hippocampal or orbital frontal lesions in monkeys. Psychoneuroendocrinology, 33(7), 926941.
MacLean, P. D. (1955). The limbic system (visceral brain) and emotional behavior. AMA Archives of Neurology & Psychiatry, 73(2), 130134.
Markon, K. (2009). Hierarchies in the structure of personality traits. Social and Personality Psychology Compass, 3(5), 812826.
Markon, K. E., Krueger, R. F. Watson, D. (2005). Delineating the structure of normal and abnormal personality: an integrative hierarchical approach. Journal of Personality and Social Psychology, 88(1), 139157.
McCrae, R. R. Costa, P. T. Jr. (2008). Empirical and theoretical status of the five-factor model of personality traits. In G. J. Boyle, G. Matthews, & D. H. Saklofske (Eds.), The SAGE handbook of personality theory and assessment, Vol. 1. Personality theories and models (pp. 273294). Thousand Oaks, CA: SAGE.
McDonald, R. J. White, N. M. (1994). Parallel information processing in the water maze: Evidence for independent memory systems involving dorsal striatum and hippocampus. Behavioral and Neural Biology, 61(3), 260270.
McNaughton, N. Corr, P. J. (2014). Approach, avoidance, and their conflict: The problem of anchoring. Frontiers in Systems Neuroscience, 8, 24.
Muthén, L. K. & Muthén, B. O. (1998–2015). Mplus user’s guide (7th ed.). Los Angeles, CA: Muthén & Muthén.
Nelson, E. E. Winslow, J. T. (2009). Non-human primates: Model animals for developmental psychopathology. Neuropsychopharmacology, 34(1), 90105.
Omura, K., Constable, R. T. Canli, T. (2005). Amygdala gray matter concentration is associated with extraversion and neuroticism. NeuroReport, 16(17), 19051908.
Papez, J. W. (1937). A proposed mechanism of emotion. Archives of Neurology & Psychiatry, 38(4), 725743.
Pearlson, G. (2008). Multisite collaborations and large datasets in psychiatric neuroimaging: Advantages, problems, and challenges. Schizophrenia Bulletin, 35, 12.
Pegues, M. P., Rogers, L. J., Amend, D., Vinogradov, S. Deicken, R. F. (2003). Anterior hippocampal volume reduction in male patients with schizophrenia. Schizophrenia Research, 60(2), 105115.
Phelps, E. A. (2004). Human emotion and memory: Interactions of the amygdala and hippocampal complex. Current Opinion in Neurobiology, 14(2), 198202.
Phillips, K. A., Bales, K. L., Capitanio, J. P., Conley, A., Czoty, P. W., t Hart, B. A., … Nader, M. A. (2014). Why primate models matter. American Journal of Primatology, 76(9), 801827.
Phillips, M. L., Ladouceur, C. D. Drevets, W. C. (2008). A neural model of voluntary and automatic emotion regulation: Implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Molecular Psychiatry, 13(9), 829857.
Power, R. A. Pluess, M. (2015). Heritability estimates of the Big Five personality traits based on common genetic variants. Translational Psychiatry, 5(7), e604.
Prather, M., Lavenex, P., Mauldin-Jourdain, M., Mason, W., Capitanio, J., Mendoza, S., & Amaral, D. (2001). Increased social fear and decreased fear of objects in monkeys with neonatal amygdala lesions. Neuroscience, 106(4), 653658.
Reamer, L. A., Haller, R. L., Thiele, E. J., Freeman, H. D., Lambeth, S. P. Schapiro, S. J. (2014). Factors affecting initial training success of blood glucose testing in captive chimpanzees (Pan troglodytes). Zoo Biology, 33(3), 212220.
Richardson, M. P., Strange, B. A. Dolan, R. J. (2004). Encoding of emotional memories depends on amygdala and hippocampus and their interactions. Nature Neuroscience, 7(3), 278285.
Sherwood, C. C., Cranfield, M. R., Mehlman, P. T., Lilly, A. A., Garbe, J. A. L., Whittier, C. A. … Holloway, R. L. (2004). Brain structure variation in great apes, with attention to the mountain gorilla (Gorilla beringei beringei). American Journal of Primatology, 63(3), 149164.
Sherwood, C. C., Gordon, A. D., Allen, J. S., Phillips, K. A., Erwin, J. M., Hof, P. R., & Hopkins, W. D. (2011). Aging of the cerebral cortex differs between humans and chimpanzees. Proceedings of the National Academy of Sciences, 108(32), 1302913034.
Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., … Flitney, D. E. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23, S208S219.
Tackett, J. L., Krueger, R. F., Iacono, W. G. McGue, M. (2008). Personality in middle childhood: A hierarchical structure and longitudinal connections with personality in late adolescence. Journal of Research in Personality, 42(6), 14561462.
Tackett, J. L., Slobodskaya, H. R., Mar, R. A., Deal, J., Halverson, C. F., Baker, S. R., … Besevegis, E. (2012). The hierarchical structure of childhood personality in five countries: Continuity from early childhood to early adolescence. Journal of Personality, 80(4), 847879.
Tellegen, A. (1985). Structures of mood and personality and their relevance to assessing anxiety, with an emphasis on self-report. In A. H. Tuma & J. D. Maser (Eds.), Anxiety and the anxiety disorders (pp. 681706). Hillsdale, NJ: Lawrence Erlbaum Associates.
Walters, G. D. Kiehl, K. A. (2015). Limbic correlates of fearlessness and disinhibition in incarcerated youth: Exploring the brain–behavior relationship with the Hare Psychopathy Checklist: Youth Version. Psychiatry Research, 230(2), 205210.
Watson, D. Clark, L. A. (1997). Extraversion and its positive emotional core. In R. Hogan, J. A. Johnson, & S. R. Briggs (Eds.), Handbook of personality psychology (pp. 767793). San Diego, CA: Academic Press.
Weiss, A., King, J. E. Figueredo, A. J. (2000). The heritability of personality factors in chimpanzees (Pan troglodytes). Behavior Genetics, 30(3), 213221.
Zhang, Y., Brady, M. Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20(1), 4557.
MathJax is a JavaScript display engine for mathematics. For more information see


Type Description Title
Supplementary materials

Latzman et al. supplementary material
Latzman et al. supplementary material 1

 Word (117 KB)
117 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed