Skip to main content Accessibility help

Increases in theta CSD power and coherence during a calibrated stop-signal task: implications for goal-conflict processing and the Behavioural Inhibition System

  • Thomas S. Lockhart (a1), Roger A. Moore (a1), Kim A. Bard (a1) and Lorenzo D. Stafford (a1)


Psychologists have identified multiple different forms of conflict, such as information processing conflict and goal conflict. As such, there is a need to examine the similarities and differences in neurology between each form of conflict. To address this, we conducted a comprehensive electroencephalogram (EEG) analysis of Shadli, Glue, McIntosh, and McNaughton’s calibrated stop-signal task (SST) goal-conflict task. Specifically, we examined changes in scalp-wide current source density (CSD) power and coherence across a wide range of frequency bands during the calibrated SST (n = 34). We assessed differences in EEG between the high and low goal-conflict conditions using hierarchical analyses of variance (ANOVAs). We also related goal-conflict EEG to trait anxiety, neuroticism, Behavioural Inhibition System (BIS)-anxiety and revised BIS (rBIS) using regression analyses. We found that changes in CSD power during goal conflict were limited to increased midfrontocentral theta. Conversely, coherence increased across 23 scalp-wide theta region pairs and one frontal delta region pair. Finally, scalp-wide theta significantly predicted trait neuroticism but not trait anxiety, BIS-anxiety or rBIS. We conclude that goal conflict involves increased midfrontocentral CSD theta power and scalp-wide theta-dominated coherence. Therefore, compared with information processing conflict, goal conflict displays a similar EEG power profile of midfrontocentral theta but a much wider coherence profile. Furthermore, the increases in theta during goal conflict are the characteristic of BIS-driven activity. Therefore, future research should confirm whether these goal-conflict effects are driven by the BIS by examining whether the effects are attenuated by anxiolytic drugs. Overall, we have identified a unique network of goal-conflict EEG during the calibrated SST.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Increases in theta CSD power and coherence during a calibrated stop-signal task: implications for goal-conflict processing and the Behavioural Inhibition System
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Increases in theta CSD power and coherence during a calibrated stop-signal task: implications for goal-conflict processing and the Behavioural Inhibition System
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Increases in theta CSD power and coherence during a calibrated stop-signal task: implications for goal-conflict processing and the Behavioural Inhibition System
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Thomas S. Lockhart, Email:


Hide All
Abdi, H. (2010). The greenhouse-geisser correction. In Salkind, N. (Ed.), Encyclopedia of research design (pp. 110). Thousand Oaks, CA: Sage.
Amodio, D. M., Master, S. L., Yee, C. M., & Taylor, S. E. (2008). Neurocognitive components of the behavioral inhibition and activation systems: Implications for theories of self-regulation. Psychophysiology, 45, 1119.
Andersen, S. B., Moore, R. A., Venables, L., & Corr, P. J. (2009). Electrophysiological correlates of anxious rumination. International Journal of Psychophysiology, 71, 156169.
Asada, H., Fukuda, Y., Tsunoda, S., Yamaguchi, M., & Tonoike, M. (1999). Frontal midline theta rhythms reflect alternative activation of prefrontal cortex and anterior cingulate cortex in humans. Neuroscience Letters, 274, 2932.
Balconi, M., & Crivelli, D. (2010). Veridical and false feedback sensitivity and punishment-reward system (BIS/BAS): ERP amplitude and theta frequency band analysis. Clinical Neurophysiology, 121, 15021510.
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57, 289300.
Bieling, P. J., Antony, M. M., & Swinson, R. P. (1998). The state-trait anxiety inventory, trait version: Structure and content re-examined. Behaviour Research and Therapy, 36, 777788.
Blume, C., Lechinger, J., del Giudice, R., Wislowska, M., Heib, D. P. J., & Schabus, M. (2015). EEG oscillations reflect the complexity of social interactions in a non-verbal social cognition task using animated triangles. Neuropsychologia, 75, 330340.
Boksem, M. A. S., Tops, M., Wester, A. E., Meijman, T. F., & Lorist, M. M. (2006). Error-related ERP components and individual differences in punishment and reward sensitivity. Brain Research, 1101, 92101.
Bosch, V., Mecklinger, A., & Friederici, A. D. (2001). Slow cortical potentials during retention of object, spatial, and verbal information. Cognitive Brain Research, 10, 219237.
Botvinick, M. M. (2007). Conflict monitoring and decision making: Reconciling two perspectives on anterior cingulate function. Cognitive, Affective, & Behavioral Neuroscience, 7, 356366.
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624652.
Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8, 539546.
Brier, M. R., Ferree, T. C., Maguire, M. J., Moore, P., Spence, J., Tillman, G. D., … Kraut, M. A. (2010). Frontal theta and alpha power and coherence changes are modulated by semantic complexity in Go/NoGo tasks. International Journal of Psychophysiology, 78, 215224.
Brunner, C., Billinger, M., Seeber, M., Mullen, T. R., & Makeig, S. (2016). Volume conduction influences scalp-based connectivity estimates. Frontiers in Computational Neuroscience, 10, 14.
Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS scales. Journal of Personality and Social Psychology, 67, 319.
Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18, 414421.
Cavanagh, J. F., & Shackman, A. J. (2015). Frontal midline theta reflects anxiety and cognitive control: Meta-analytic evidence. Journal of Physiology Paris, 109, 315.
Chan, R. W., Leong, A. T. L., Ho, L. C., Gao, P. P., Wong, E. C., Dong, C. M., … Wu, E. X. (2017). Low-frequency hippocampal–cortical activity drives brain-wide resting-state functional MRI connectivity. Proceedings of the National Academy of Sciences of the United States of America, 114, 69726981.
Cohen, M. X. (2014). A neural microcircuit for cognitive conflict detection and signaling. Trends in Neurosciences, 37, 480490.
Cohen, M. X., & Cavanagh, J. F. (2011). Single-trial regression elucidates the role of prefrontal theta oscillations in response conflict. Frontiers in Psychology, 2, 112.
Corr, P. J. (2008). The reinforcement sensitivity theory of personality. Cambridge: Cambridge University Press.
Costello, A. B., & Osborne, J. W. (2005). Best practices in exploratory factor analysis. In Osborne, J. (Ed.), Best practices in quantitative methods (pp. 110). Thousand Oaks, CA: Sage.
De Pascalis, V., Varriale, V., & D'Antuono, L. (2010). Event-related components of the punishment and reward sensitivity. Clinical Neurophysiology, 121, 6076.
Dien, J., Beal, D. J., & Berg, P. (2005). Optimizing principal components analysis of event‐related potentials: Matrix type, factor loading weighting, extraction, and rotations. Clinical Neurophysiology, 116, 18081825.
Duffy, F. H., & Als, H. (2012). A stable pattern of EEG spectral coherence distinguishes children with autism from neuro‐typical controls ‐ a large case control study. BMC Medicine, 10, 64.
Eysenck, S. B. G., Eysenck, H. J., & Barrett, P. (1985). A revised version of the psychoticism scale. Personality and Individual Differences, 6, 2129.
Ferree, T. C., Brier, M. R., Hart, J., & Kraut, M. A. (2009). Space-time-frequency analysis of EEG data using within-subject statistical tests followed by sequential PCA. NeuroImage, 45, 109121.
Ferreira, C. S., Marful, A., Staudigl, T., Bajo, T., & Hanslmayr, S. (2014). Medial prefrontal theta oscillations track the time course of interference during selective memory retrieval. Journal of Cognitive Neuroscience, 26, 777791.
Franklin, S. B., Gibson, D. J., Robertson, P. A., Pohlmann, J. T., & Fralish, J. S. (1995). Parallel analysis: A method for determining significant principal components. Journal of Vegetation Science, 6, 99106.
Gray, J. A. (1982). The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system. Oxford: Oxford University Press.
Gray, J. A., & McNaughton, N. (2000). The neuropsychology of anxiety: An enquiry into the functions of septohippocampal theories (2nd ed.). Oxford: Oxford University Press.
Halliday, D. M., & Rosenberg, J. R. (2000). On the application, estimation and interpretation of coherence and pooled coherence. Journal of Neuroscience Methods, 100, 173174.
Hanslmayr, S., Pastötter, B., Bäuml, K. H., Gruber, S., Wimber, M., & Klimesch, W. (2008). The electrophysiological dynamics of interference during the Stroop task. Journal of Cognitive Neuroscience, 20, 215225.
Heym, N., Ferguson, E., & Lawrence, C. (2008). An evaluation of the relationship between Gray’s revised RST and Eysenck’s PEN: Distinguishing BIS and FFFS in Carver and White’s BIS/BAS scales. Personality and Individual Differences, 45, 709715.
Ishii, R., Shinosaki, K., Ukai, S., Inouye, T., Ishihara, T., Yoshimine, T., … Takeda, M. (1999). Medial prefrontal cortex generates frontal midline theta rhythm. Neuroreport, 10, 675679.
Jarovi, J., Volle, J., Yu, X., Guan, L., & Takehara-Nishiuchi, K. (2018). Prefrontal theta oscillations promote selective encoding of behaviorally relevant events. Eneuro, 5, pii: ENEURO.0407–18.2018.
Jaušovec, N., & Jaušovec, K. (2007). Personality, gender and brain oscillations. International Journal of Psychophysiology, 66, 215224.
Johnson, S. L., Turner, R. J., & Iwata, N. (2003). BIS/BAS levels and psychiatric disorder: An epidemiological study. Journal of Psychopathology and Behavioral Assessment, 25, 2536.
Jung, T., Makeig, S., Humphries, C., Lee, T., McKeown, M. J., Iragui, I., & Sejnowski, T. J. (2000). Removing electroencephalographic artefacts by blind source separation. Psychophysiology, 37, 163178.
Kayser, J., & Tenke, C. E. (2003). Optimizing PCA methodology for ERP component identification and measurement: Theoretical rationale and empirical evaluation. Clinical Neurophysiology, 114, 23072325.
Kayser, J., & Tenke, C. E. (2006). Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: II. Adequacy of low-density estimates. Clinical Neurophysiology, 117, 369380.
Kayser, J., & Tenke, C. E. (2010). In search of the Rosetta Stone for scalp EEG: converging on reference-free techniques. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 121, 19731975.
Kayser, J., & Tenke, C. E. (2015). Issues and considerations for using the scalp surface Laplacian in EEG/ERP research: A tutorial review. International Journal of Psychophysiology, 97, 189209.
Khadem, A., & Hossein-Zadeh, G. A. (2014). Quantification of the effects of volume conduction on the EEG/MEG connectivity estimates: An index of sensitivity to brain interactions. Physiological Measurement, 35, 21492164.
Lachaux, J.-P., Rodriguez, E., Martinerie, J., & Varela, F. J. (1999). Measuring phase synchrony in brain signals. Human Brain Mapping, 8, 194208.
Luck, S. J., & Gaspelin, N. (2017). How to get statistically significant effects in any ERP experiment (and why you shouldn’t). Psychophysiology, 54, 146157.
Massar, S. A. A., Rossi, V., Schutter, D. J. L. G., & Kenemans, J. L. (2012). Baseline EEG theta/beta ratio and punishment sensitivity as biomarkers for feedback-related negativity (FRN) and risk-taking. Clinical Neurophysiology, 123, 19581965.
McDonald, J. H. (2008). Handbook of biological statistics (2nd ed.). Baltimore, MD: Sparky House.
McNaughton, N., & Corr, P. J. (2004). A two-dimensional neuropsychology of defense: Fear/anxiety and defensive distance. Neuroscience and Biobehavioral Reviews, 28, 285305.
McNaughton, N., DeYoung, C. G., & Corr, P. J. (2016). Approach/avoidance. In Absher, J. R. & Cloutier, J. (Eds.), Neuroimaging personality, social cognition, and character (pp. 2549). San Diego, CA: Elsevier Academic Press.
McNaughton, N., Swart, C., Neo, P., Bates, V., & Glue, P. (2013). Anti-anxiety drugs reduce conflict‐specific theta ‐ a possible human anxiety-specific biomarker. Journal of Affective Disorders, 148, 104111.
Mitchell, D. J., McNaughton, N., Flanagan, D., & Kirk, I. J. (2008). Frontal-midline theta from the perspective of hippocampal “theta.” Progress in Neurobiology, 86, 156185.
Mitra, A., Snyder, A. Z., Hacker, C. D., Pahwa, M., Tagliazucchi, E., Laufs, H., … Raichle, M. E. (2016). Human cortical–hippocampal dialogue in wake and slow-wave sleep. Proceedings of the National Academy of Sciences of the United States of America, 113, 68686876.
Moore, R. A., Gale, A., Morris, P. H., & Forrester, D. (2006). Theta phase locking across the neocortex reflects cortico-hippocampal recursive communication during goal conflict resolution. International Journal of Psychophysiology, 60, 260273.
Moore, R. A., Gale, A., Morris, P. H., & Forrester, D. (2008). Alpha power and coherence primarily reflect neural activity related to stages of motor response during a continuous monitoring task. International Journal of Psychophysiology, 69, 7989.
Moore, R. A., Mills, M., Marshman, P., & Corr, P. J. (2012). Behavioural Inhibition System (BIS) sensitivity differentiates EEG theta responses during goal conflict in a continuous monitoring task. International Journal of Psychophysiology, 85, 135144.
Neo, P. S. H., Thurlow, J. K., & McNaughton, N. (2011). Stopping, goal-conflict, trait anxiety and frontal rhythmic power in the stop-signal task. Cognitive, Affective, & Behavioral Neuroscience, 11, 485493.
Nigbur, R., Cohen, M. X., Ridderinkhof, K. R., & Sturmer, B. (2012). Theta dynamics reveal domain-specific control over stimulus and response conflict. Journal of Cognitive Neuroscience, 24, 12641274.
Nigbur, R., Ivanova, G., & Stürmer, B. (2011). Theta power as a marker for cognitive interference. Clinical Neurophysiology, 122, 21852194.
Nunez, P. L., & Srinivasan, R. (2006). Electric fields of the brain: The neurophysics of EEG. Oxford: Oxford University Press.
O'Neill, P.-K., Gordon, J. A., & Sigurdsson, T. (2013). Theta oscillations in the medial prefrontal cortex are modulated by spatial working memory and synchronize with the hippocampus through its ventral subregion. Journal of Neuroscience, 33, 1421114224.
Onton, J., Delorme, A., & Makeig, S. (2005). Frontal midline EEG dynamics during working memory. NeuroImage, 27, 341356.
Padrão, G., Rodriguez-Herreros, B., Pérez Zapata, L., & Rodriguez-Fornells, A. (2015). Exogenous capture of medial-frontal oscillatory mechanisms by unattended conflicting information. Neuropsychologia, 75, 458468.
Papenberg, G., Hämmerer, D., Müller, V., Lindenberger, U., & Li, S. C. (2013). Lower theta inter-trial phase coherence during performance monitoring is related to higher reaction time variability: A lifespan study. NeuroImage, 83, 912920.
Perkins, A. M., Ettinger, U., Weaver, K., Schmechtig, A., Schrantee, A., Morrison, P. D., … Corr, P. J. (2013). Advancing the defensive explanation for anxiety disorders: Lorazepam effects on human defense are systematically modulated by personality and threat-type. Translational Psychiatry, 3, e246.
Perrin, F., Pernier, J., Bertrand, O., & Echallier, J. F. (1989). Spherical splines for scalp potential and current density mapping. Electroencephalography and Clinical Neurophysiology, 72, 184187.
Pinner, J. F. L., & Cavanagh, J. F. (2017). Frontal theta accounts for individual differences in the cost of conflict on decision making. Brain Research, 1672, 7380.
Razumnikova, O. M. (2004). Gender differences in hemispheric organization during divergent thinking: an EEG investigation in human subjects. Neuroscience Letters, 362, 193195.
Reuter, M., Cooper, A. J., Smillie, L. D., Markett, S., & Montag, C. (2015). A new measure for the revised reinforcement sensitivity theory: Psychometric criteria and genetic validation. Frontiers in Systems Neuroscience, 9, 138.
Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306, 443447.
Rutkove, S. B. (2007). Introduction to volume conduction. In Blum, A. S. & Rutkove, S. B. (Eds.), The clinical neurophysiology primer (pp. 4353). Totowa, NJ: Humana Press.
Salkind, N. J. (Ed.). (2010). Encyclopedia of research design. Thousand Oaks, CA: Sage.
Sarnthein, J., Petsche, H., Rappelsberger, P., Shaw, G. L., & von Stein, A. (1998). Synchronization between prefrontal and posterior association cortex during human working memory. Proceedings of the National Academy of Sciences of the United States of America, 95, 70927096.
Schönbrodt, F. D., & Perugini, M. (2013). At what sample size do correlations stabilize? Journal of Research in Personality, 47, 609612.
Sehatpour, P., Molholm, S., Schwartz, T. H., Mahoney, J. R., Mehta, A. D., Javitt, D. C., … Foxe, J. J. (2008). A human intracranial study of long-range oscillatory coherence across a frontal-occipital-hippocampal brain network during visual object processing. Proceedings of the National Academy of Sciences of the United States of America, 105, 43994404.
Shadli, S. M., Glue, P., McIntosh, J., & McNaughton, N. (2015). An improved human anxiety process biomarker: Characterization of frequency band, personality and pharmacology. Translational Psychiatry, 5, e699.
Shadli, S. M., Smith, M. J., Glue, P., & McNaughton, N. (2016). Testing an anxiety process biomarker: Generalisation from an auditory to a visual stimulus. Biological Psychology, 117, 5055.
Spielberger, C. D. (1983). Manual for the state-trait anxiety inventory STAI. Palo Alto, CA: Consulting Psychologists Press.
Stins, J. F., Polderman, J. C., Boomsma, D. I., & de Geus, E. J. (2005). Response interference and working memory in 12-year-old children. Child Neuropsychology, 11, 191201.
Tenke, C. E., & Kayser, J. (2015). Surface Laplacians (SL) and phase properties of EEG rhythms: Simulated generators in a volume-conduction model. International Journal of Psychophysiology, 97, 285298.
Tenke, C. E., Kayser, J., Svob, C., Miller, L., Alvarenga, J. E., Abraham, K., … Bruder, G. E. (2017). Association of posterior EEG alpha with prioritization of religion or spirituality: A replication and extension at 20-year follow-up. Biological Psychology, 124, 7986.
Torrubia, R., Avila, C., & Caseras, X. (2008). Reinforcement sensitivity scales. In Corr, P. J. (Ed.), The reinforcement sensitivity theory of personality (pp. 188227). Cambridge: Cambridge University Press.
van de Vijver, I., Ridderinkhof, K. R., & Cohen, M. X. (2011). Frontal oscillatory dynamics predict feedback learning and action adjustment. Journal of Cognitive Neuroscience, 23, 41064121.
van den Broek, S. P., Reinders, F., Donderwinkel, M., & Peters, M. J. (1998). Volume conduction effects in EEG and MEG. Electroencephalography and Clinical Neurophysiology, 106, 522534.
Wacker, J., Chavanon, M. L., Leue, A., & Stemmler, G. (2010). Trait BIS predicts alpha asymmetry and P300 in a go/no-go task. European Journal of Personality, 24, 85105.
Young, C. K., & McNaughton, N. (2009). Coupling of theta oscillations between anterior and posterior midline cortex and with the hippocampus in freely behaving rats. Cerebral Cortex, 19, 2440.
Zavala, B., Tan, H., Ashkan, K., Foltynie, T., Limousin, P., Zrinzo, L., … Brown, P. (2016). Human subthalamic nucleus-medial frontal cortex theta phase coherence is involved in conflict and error related cortical monitoring. NeuroImage, 137, 178187.
MathJax is a JavaScript display engine for mathematics. For more information see


Increases in theta CSD power and coherence during a calibrated stop-signal task: implications for goal-conflict processing and the Behavioural Inhibition System

  • Thomas S. Lockhart (a1), Roger A. Moore (a1), Kim A. Bard (a1) and Lorenzo D. Stafford (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed