Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T04:23:27.052Z Has data issue: false hasContentIssue false

Vector of Trypanosoma copemani identified as Ixodes sp.

Published online by Cambridge University Press:  26 April 2011

J. M. AUSTEN*
Affiliation:
School of Veterinary and Biomedical Sciences, Division of Health Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150
U. M. RYAN
Affiliation:
School of Veterinary and Biomedical Sciences, Division of Health Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150
J. A. FRIEND
Affiliation:
Science Division, Department of Environment and Conservation, 120 Albany Highway, Albany, Western Australia, 6330
W. G. F. DITCHAM
Affiliation:
School of Veterinary and Biomedical Sciences, Division of Health Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150
S. A. REID
Affiliation:
School of Veterinary and Biomedical Sciences, Division of Health Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150
*
*Corresponding author: School of Veterinary and Biomedical Sciences, Division of Health Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150. Tel: +61 8 9360 6714. Fax: +61 8 9310 4144. E-mail: J.meinema@murdoch.edu.au

Summary

A total of 41 ticks were collected from 15 quokkas on Bald Island and 2 ticks from a Gilbert's potoroo from Two Peoples Bay. Three species of Ixodid ticks Ixodes australiensis, Ixodes hirsti and Ixodes myrmecobii were identified on the quokkas known to have a high prevalence of Trypanosoma copemani. Tick faeces from ticks isolated from 8 individual quokkas and a Gilbert's potoroo were examined with one identified as positive for trypanosomes. Faecal examination revealed trypanosomes similar to in vitro life-cycle stages of T. copemani. In total 12 ticks were dissected and trypanosomes found in sections of their midgut and haemolymph, 49 and 117 days after collection. Tick faeces, salivary glands and midguts from I. australiensis were screened using an 18S rRNA PCR with amplification seen only from the midguts. Sequencing showed 100% homology to T. copemani (genotype A) and 99·9% homology to the wombat (AII) isolate of T. copemani. Trypanosomes were only detected in I. australiensis as neither I. hirsti nor I. myrmecobii survived the initial 30-day storage conditions. We therefore identify a vector for T. copemani as I. australiensis and, given the detection of trypanosomes in the faeces, suggest that transmission is via the faecal-oral route.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Austen, J. M., Jefferies, R., Friend, J. A., Ryan, U., Adams, P. and Reid, S. A. (2009). Morphological and molecular characterization of Trypanosoma copemani n. sp. (Trypanosomatidae) isolated from Gilbert's potoroo (Potorous gilbertii) and quokka (Setonix brachyurus). Parasitology 136, 783792.Google Scholar
Bettiol, S. S., Jakes, K., Le, D. D., Goldsmid, J. M. and Hocking, G. (1998). First record of trypanosomes in Tasmanian bandicoots. Journal of Parasitology 84, 538541.CrossRefGoogle ScholarPubMed
Edwards, K. T., Goddard, J. and Varela-Stokes, A. S. (2009). Examination of the internal morphology of the Ixodid tick, Amblyomma maculatum Koch, (Acari: Ixodidae); a “how-to” pictorial dissection guide. Midsouth Entomologist 2, 2839.Google Scholar
El Kady, G. A. (1998). Protozoal parasites in tick species infecting camels in Sinai Peninsula. Journal of Egyptian Society of Parasitology 28, 765776.Google Scholar
Guhl, F. and Vallejo, G. A. (2003). Trypanosoma (Herpetosoma) rangeli Tejera, 1920: an updated review. Memorias do Instituto Oswaldo Cruz 98, 435442.Google Scholar
Hamilton, P. B., Stevens, J. R., Gidley, J., Holz, P. and Gibson, W. C. (2005). A new lineage of trypanosomes from Australian vertebrates and terrestrial bloodsucking leeches (Haemadipsidae). International Journal for Parasitology 35, 431443.Google Scholar
Hoare, C. A. (1972). The Trypanosomes of Mammals. Blackwell Scientific Publications, Oxford and Edinburgh, UK.Google Scholar
Jakes, K. A., O'donoghue, P. J. and Adlard, R. D. (2001). Phylogenetic relationships of Trypanosoma chelodina and Trypanosoma binneyi from Australian tortoises and platypuses inferred from small subunit rRNA analysis. Parasitology 123, 483487.CrossRefGoogle Scholar
Kollien, A. H. and Schaub, G. A. (1998). The development of Trypanosoma cruzi (Trypanosomatidae) in the reduviid bug Triatoma infestans (Insecta): influence of starvation. Journal of Eukaryotic Microbiology 45, 5963.CrossRefGoogle ScholarPubMed
Latif, A. A., Bakheit, M. A., Mohamed, A. E. and Zweygarth, E. (2004). High infection rates of the Hyalomma anatolicum anatolicum with Trypanosoma theileri. Onderstepoort Journal of Veterinary Research 71, 251256.Google Scholar
Lukes, J., Jirku, M., Dolezel, D., Kral'ova, I., Hollar, L. and Maslov, D. (1997). Analysis of ribosomal RNA genes suggests that trypanosomes are monophyletic. Journal of Molecular Evolution 44, 521527.CrossRefGoogle ScholarPubMed
Machado, E. M., Fernandes, A. J., Murta, S. M., Vitor, R. W., Camilo, D. J. Jr., Pinheiro, S. W., Lopes, E. R., Adad, S. J., Romanha, A. J. and Pinto Dias, J. C. (2001). A study of experimental reinfection by Trypanosoma cruzi in dogs. American Journal of Tropical Medicine and Hygiene 65, 958965.CrossRefGoogle ScholarPubMed
Mackerras (1959). The Haematozoa of Australian mammals. Australian Journal of Zoology, 7, 105135.Google Scholar
McInnes, L. M., Gillett, A., Ryan, U. M., Austen, J., Campbell, R. S., Hanger, J. and Reid, S. A. (2009). Trypanosoma irwini n. sp (Sarcomastigophora: Trypanosomatidae) from the koala (Phascolarctos cinereus). Parasitology 136, 875885.CrossRefGoogle Scholar
Noyes, H. A., Stevens, J. R., Teixeira, M., Phelan, J. and Holz, P. (1999). A nested PCR for the ssrRNA gene detects Trypanosoma binneyi in the platypus and Trypanosoma sp. in wombats and kangaroos in Australia. International Journal for Parasitology 29, 331339.CrossRefGoogle ScholarPubMed
Roberts, F. H. S. (1970). Australian Ticks. Commonwealth Scientific and Industrial Research Organisation, Australia.Google Scholar
Shastri, U. V. and Deshpande, P. D. (1981). Hyalomma anatolicum anatolicum (Koch, 1844) as a possible vector for transmission of Trypanosoma theileri, Laveran, 1902 in cattle. Veterinary Parasitology 9, 151155.CrossRefGoogle ScholarPubMed
Sinclair, E. A. (1998). Morphological variation among populations of the quokka, Setonix brachyurus (Macropodidae: Marsupialia), in Western Australia. Australian Journal of Zoology 46, 439449.CrossRefGoogle Scholar
Sinclair, E. A. (2001). Phylogeographic variation in the quokka, Setonix brachyurus (Marsupialia: Macropodidae): implications for conservation. Animal Conservation 4, 325333.Google Scholar
Stevens, J. R., Noyes, H. A., Dover, G. A. and Gibson, W. C. (1999). The ancient and divergent origins of the human pathogenic trypanosomes, Trypanosoma brucei and T. cruzi. Parasitology 118, 107116.Google Scholar
Thekisoe, O. M., Honda, T., Fujita, H., Battsetseg, B., Hatta, T., Fujisaki, K., Sugimoto, C. and Inoue, N. (2007). A trypanosome species isolated from naturally infected Haemaphysalis hystricis ticks in Kagoshima Prefecture, Japan. Parasitology 134, 967974.Google Scholar
Vickerman, K. (1985). Developmental cycles and biology of pathogenic trypanosomes. British Medical Bulletin 41, 105114.Google Scholar