Skip to main content Accessibility help

Towards deorphanizing G protein-coupled receptors of Schistosoma mansoni using the MALAR yeast two-hybrid system

  • Oliver Weth (a1), Simone Haeberlein (a1), Martin Haimann (a1), Yinjie Zhang (a2) and Christoph G. Grevelding (a1)...


Schistosomiasis is an acute and chronic disease caused by parasitic worms of the genus Schistosoma. Treatment is solely dependent on praziquantel. In the face of the worldwide dimension, projects have been initiated to develop new chemotherapies. Due to their proven druggability, G protein-coupled receptors (GPCRs) are promising targets for anthelmintics. However, to identify candidate receptors, a deeper understanding of GPCR signalling in schistosome biology is essential. Comparative transcriptomics of paired and unpaired worms and their gonads revealed 59 differentially regulated GPCR-coding genes putatively involved in neuronal processes. In general, the diversity among GPCRs and their integral membrane topology make it difficult to characterize and deorphanize these receptors. To overcome existing limitations, we performed a pilot approach and utilized the innovative Membrane-Anchored Ligand And Receptor yeast two-hybrid system (MALAR-Y2H) to associate potential neuropeptide ligands with their cognate receptors. Here, we demonstrated the ability to express full-length GPCRs of Schistosoma mansoni in a heterologous yeast-based system. Additionally, we localized GPCRs and chimeras of neuropeptides fused to the WBP1 transmembrane domain of yeast to the plasma membrane of yeast cells. Reporter gene assays indicated ligand-receptor binding, which allowed us to identify certain neuropeptides as potential ligands for two GPCRs, which had been found before to be differentially expressed in schistosomes in a pairing-dependent manner. Thus, the MALAR-Y2H system appears suitable to unravel schistosome GPCR–ligand interactions. Besides its relevance for understanding schistosome biology, identifying and characterizing GPCR–ligand interaction will also contribute to applied research aspects.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Towards deorphanizing G protein-coupled receptors of Schistosoma mansoni using the MALAR yeast two-hybrid system
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Towards deorphanizing G protein-coupled receptors of Schistosoma mansoni using the MALAR yeast two-hybrid system
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Towards deorphanizing G protein-coupled receptors of Schistosoma mansoni using the MALAR yeast two-hybrid system
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Christoph G. Grevelding, E-mail:


Hide All
Almagro Armenteros, JJ, Tsirigos, KD, Sønderby, CK, Petersen, TN, Winther, O, Brunak, S, Heijne, G von and Nielsen, H (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature biotechnology 37, 420423. doi: 10.1038/s41587-019-0036-z.
Argos, P (1990) An Investigation of Oligopeptides linking Domains in Protein Tertiary Structures and Possible Candidates for General Gene Fusion. Journal of Molecular Biology 211, 943958. doi: 10.1016/0022-2836(90)90085-Z
Atkinson, LE, McVeigh, P, Kimber, MJ, Marks, NJ, Eipper, BA, Mains, RE, Day, TA and Maule, AG (2010) A PAL for Schistosoma mansoni PHM. Molecular and biochemical parasitology 173, 97106. doi: 10.1016/j.molbiopara.2010.05.009.
Beltran, S and Boissier, J (2008) Schistosome monogamy: who, how, and why? Trends in parasitology 24, 386391. doi: 10.1016/
Bergquist, R, Utzinger, J and Keiser, J (2017) Controlling schistosomiasis with praziquantel: How much longer without a viable alternative? Infectious diseases of poverty 6, 74. doi: 10.1186/s40249-017-0286-2.
Berriman, M, Haas, BJ, LoVerde, PT, Wilson, RA, Dillon, GP, Cerqueira, GC, Mashiyama, ST, Al-Lazikani, B, Andrade, LF, Ashton, PD, Aslett, MA, Bartholomeu, DC, Blandin, G, Caffrey, CR, Coghlan, A, Coulson, R, Day, TA, Delcher, A, DeMarco, R, Djikeng, A, Eyre, T, Gamble, JA, Ghedin, E, Gu, Y, Hertz-Fowler, C, Hirai, H, Hirai, Y, Houston, R, Ivens, A, Johnston, DA, Lacerda, D, Macedo, CD, McVeigh, P, Ning, Z, Oliveira, G, Overington, JP, Parkhill, J, Pertea, M, Pierce, RJ, Protasio, AV, Quail, MA, Rajandream, M-A, Rogers, J, Sajid, M, Salzberg, SL, Stanke, M, Tivey, AR, White, O, Williams, DL, Wortman, J, Wu, W, Zamanian, M, Zerlotini, A, Fraser-Liggett, CM, Barrell, BG and El-Sayed, NM (2009) The genome of the blood fluke Schistosoma mansoni. Nature 460, 352358. doi: 10.1038/nature08160.
Campos, TDL, Young, ND, Korhonen, PK, Hall, RS, Mangiola, S, Lonie, A and Gasser, RB (2014) Identification of G protein-coupled receptors in Schistosoma haematobium and S. mansoni by comparative genomics. Parasites & vectors 7, 242. doi: 10.1186/1756-3305-7-242.
Dettman, CD, Higgins-Opitz, SB and Saikoolal, A (1989) Enhanced efficacy of the paddling method for schistosome infection of rodents by a four-step pre-soaking procedure. Parasitology research 76, 183184. doi: 10.1007/bf00930846.
Eipper, BA, Stoffers, DA and Mains, RE (1992) The biosynthesis of neuropeptides: peptide alpha-amidation. Annual review of neuroscience 15, 5785. doi: 10.1146/
Fields, S and Song, O-k (1989) A novel genetic system to detect protein–protein interactions. Nature 340, 245246. doi: 10.1038/340245a0.
Frooninckx, L, van Rompay, L, Temmerman, L, van Sinay, E, Beets, I, Janssen, T, Husson, SJ and Schoofs, L (2012) Neuropeptide GPCRs in C. elegans. Frontiers in endocrinology 3, 167. doi: 10.3389/fendo.2012.00167.
Gardner, MJ, Hall, N, Fung, E, White, O, Berriman, M, Hyman, RW, Carlton, JM, Pain, A, Nelson, KE, Bowman, S, Paulsen, IT, James, K, Eisen, JA, Rutherford, K, Salzberg, SL, Craig, A, Kyes, S, Chan, M-S, Nene, V, Shallom, SJ, Suh, B, Peterson, J, Angiuoli, S, Pertea, M, Allen, J, Selengut, J, Haft, D, Mather, MW, Vaidya, AB, Martin, DMA, Fairlamb, AH, Fraunholz, MJ, Roos, DS, Ralph, SA, McFadden, GI, Cummings, LM, Subramanian, GM, Mungall, C, Venter, JC, Carucci, DJ, Hoffman, SL, Newbold, C, Davis, RW, Fraser, CM and Barrell, B (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498511. doi: 10.1038/nature01097.
Graber, JH, McAllister, GD and Smith, TF (2002) Probalbilistic prediction of Saccharomyces cerevisiae mRNA 3'-processing sites. Nucleic acids research 30, 18511858. doi: 10.1093/nar/30.8.1851.
Grevelding, CG (1995) The female-specific W1 sequence of the Puerto Rican strain of Schistosoma mansoni occurs in both genders of a Liberian strain. Molecular and biochemical parasitology 71, 269272. doi: 10.1016/0166-6851(94)00058-u.
Hahnel, S, Wheeler, N, Lu, Z, Wangwiwatsin, A, McVeigh, P, Maule, A, Berriman, M, Day, T, Ribeiro, P and Grevelding, CG (2018) Tissue-specific transcriptome analyses provide new insights into GPCR signalling in adult Schistosoma mansoni. PLoS pathogens 14, e1006718. doi: 10.1371/journal.ppat.1006718.
Heijne, G von (1990) The signal peptide. The Journal of Membrane Biology 115, 195201. doi: 10.1007/bf01868635.
Honig, MG and Hume, RI (1986) Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. The Journal of cell biology 103, 171187. doi: 10.1083/jcb.103.1.171.
Keire, DA, Bowers, CW, Solomon, TE and Reeve, JR (2002) Structure and receptor binding of PYY analogs. Peptides 23, 305321. doi: 10.1016/S0196-9781(01)00602-7.
Klein, C, Paul, JI, Sauvé, K, Schmidt, MM, Arcangeli, L, Ransom, J, Trueheart, J, Manfredi, JP, Broach, JR and Murphy, AJ (1998) Identification of surrogate agonists for the human FPRL-1 receptor by autocrine selection in yeast. Nature Biotechnology 16, 13341337. doi: 10.1038/4310.
Koziol, U, Koziol, M, Preza, M, Costábile, A, Brehm, K and Castillo, E (2016) De novo discovery of neuropeptides in the genomes of parasitic flatworms using a novel comparative approach. International journal for parasitology 46, 709721. doi: 10.1016/j.ijpara.2016.05.007.
Kunz, W (2001) Schistosome male-female interaction: induction of germ-cell differentiation. Trends in parasitology 17, 227231. doi: 10.1016/s1471-4922(01)01893-1
Li, J, Gao, J, Han, L, Zhang, Y, Guan, W, Zhou, L, Yu, Y and Han, W (2016) Development of a membrane-anchored ligand and receptor yeast two-hybrid system for ligand-receptor interaction identification. Scientific reports 6, 35631. doi: 10.1038/srep35631.
LoVerde, PT (2002) Presidential address. Sex and schistosomes: an interesting biological interplay with control implications. Journal of Parasitology 88, 313. doi: 10.1645/0022-3395(2002)088[0003:PASASA]2.0.CO;2.
Lu, Z, Sessler, F, Holroyd, N, Hahnel, S, Quack, T, Berriman, M and Grevelding, CG (2016) Schistosome sex matters: a deep view into gonad-specific and pairing-dependent transcriptomes reveals a complex gender interplay. Scientific reports 6, 31150. doi: 10.1038/srep31150.
Lu, Z, Spänig, S, Weth, O and Grevelding, CG (2019) Males, the Wrongly Neglected Partners of the Biologically Unprecedented Male–Female Interaction of Schistosomes. Frontiers in Genetics 10, 4334. doi: 10.3389/fgene.2019.00796.
Luttrell, LM (2008) Reviews in Molecular Biology and Biotechnology: Transmembrane Signaling by G Protein-Coupled Receptors. Molecular Biotechnology 39, 239264. doi: 10.1007/s12033-008-9031-1.
MacDonald, K, Kimber, MJ, Day, TA and Ribeiro, P (2015) A constitutively active G protein-coupled acetylcholine receptor regulates motility of larval Schistosoma mansoni. Molecular and biochemical parasitology 202, 2937. doi: 10.1016/j.molbiopara.2015.09.001.
Mair, GR, Niciu, MJ, Stewart, MT, Brennan, G, Omar, H, Halton, DW, Mains, R, Eipper, BA, Maule, AG and Day, TA (2004) A functionally atypical amidating enzyme from the human parasite Schistosoma mansoni. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 18, 114121. doi: 10.1096/fj.03-0429com.
McVeigh, P, Atkinson, L, Marks, NJ, Mousley, A, Dalzell, JJ, Sluder, A, Hammerland, L and Maule, AG (2012) Parasite neuropeptide biology: Seeding rational drug target selection? International journal for parasitology. Drugs and drug resistance 2, 7691. doi: 10.1016/j.ijpddr.2011.10.004.
McVeigh, P, Mair, GR, Atkinson, L, Ladurner, P, Zamanian, M, Novozhilova, E, Marks, NJ, Day, TA and Maule, AG (2009) Discovery of multiple neuropeptide families in the phylum Platyhelminthes. International journal for parasitology 39, 12431252. doi: 10.1016/j.ijpara.2009.03.005.
McVeigh, P, Mair, GR, Novozhilova, E, Day, A, Zamanian, M, Marks, NJ, Kimber, MJ, Day, TA and Maule, AG (2011) Schistosome I/Lamides--a new family of bioactive helminth neuropeptides. International journal for parasitology 41, 905913. doi: 10.1016/j.ijpara.2011.03.010.
Minic, J, Persuy, M-A, Godel, E, Aioun, J, Connerton, I, Salesse, R and Pajot-Augy, E (2005) Functional expression of olfactory receptors in yeast and development of a bioassay for odorant screening. FEBS Journal 272, 524537. doi: 10.1111/j.1742-4658.2004.04494.x.
Parker-Manuel, RP, Grevelding, CG and Gelmedin, V (2015) Cryptic 3' mRNA processing signals hinder the expression of Schistosoma mansoni integrins in yeast. Molecular and biochemical parasitology 199, 5157. doi: 10.1016/j.molbiopara.2015.03.005.
Reiländer, W, Weiss, HM (1998) Production of G-protein-coupled receptors in yeast. Current Opinion in Biotechnology 9, 510517. doi: 10.1016/s0958-1669(98)80038-4
Saberi, A, Jamal, A, Beets, I, Schoofs, L, Newmark, PA (2016) GPCRs direct germline development and somatic gonad function in planarians. PLoS Biol. 14(5):e1002457. doi: 10.1371/journal.pbio.1002457
Schiöth, HB and Fredriksson, R (2005) The GRAFS classification system of G-protein coupled receptors in comparative perspective. General and comparative endocrinology 142, 94101. doi: 10.1016/j.ygcen.2004.12.018.
Stagljar, I, Korostensky, C, Johnsson, N and te Heesen, S (1998) A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proceedings of the National Academy of Sciences of the United States of America 95, 51875192. doi: 10.1073/pnas.95.9.5187.
Suter, B, Kittanakom, S and Stagljar, I (2008) Two-hybrid technologies in proteomics research. Current Opinion in Biotechnology 19, 316323. doi: 10.1016/j.copbio.2008.06.005.
Taman, A and Ribeiro, P (2009) Investigation of a dopamine receptor in Schistosoma mansoni: functional studies and immunolocalization. Molecular and biochemical parasitology 168, 2433. doi: 10.1016/j.molbiopara.2009.06.003.
te Heesen, S, Rauhut, R, Aebersold, R, Abelson, J, Aebi, M and Clark, MW (1991) An essential 45 kDa yeast transmembrane protein reacts with anti-nuclear pore antibodies: purification of the protein, immunolocalization and cloning of the gene. European journal of cell biology 56, 818.
Tripp, JD, Lilley, JL, Wood, WN and Lewis, LK (2013) Enhancement of plasmid DNA transformation efficiencies in early stationary-phase yeast cell cultures. Yeast (Chichester, England) 30, 191200. doi: 10.1002/yea.2951.
Videvall, E (2018) Plasmodium parasites of birds have the most AT-rich genes of eukaryotes. Microbial genomics 4. doi: 10.1099/mgen.0.000150.
WHO Global 2016 Disease burden and mortality estimates. Retrieved from: (accessed 4 September 2019).
Yarimizu, T, Nakamura, M, Hoshida, H and Akada, R (2015) Synthetic signal sequences that enable efficient secretory protein production in the yeast Kluyveromyces marxianus. Microbial cell factories 14, 20. doi: 10.1186/s12934-015-0203-y.
Zamanian, M, Kimber, MJ, McVeigh, P, Carlson, SA, Maule, AG and Day, TA (2011) The repertoire of G protein-coupled receptors in the human parasite Schistosoma mansoni and the model organism Schmidtea mediterranea. BMC genomics 12, 596. doi: 10.1186/1471-2164-12-596.


Type Description Title
Supplementary materials

Weth et al. supplementary material
Weth et al. supplementary material

 Unknown (6.8 MB)
6.8 MB

Towards deorphanizing G protein-coupled receptors of Schistosoma mansoni using the MALAR yeast two-hybrid system

  • Oliver Weth (a1), Simone Haeberlein (a1), Martin Haimann (a1), Yinjie Zhang (a2) and Christoph G. Grevelding (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed