Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T18:11:28.370Z Has data issue: false hasContentIssue false

Thermodynamics of miracidial survival and metabolism

Published online by Cambridge University Press:  20 July 2012

N. J. MORLEY*
Affiliation:
School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
*
*Author contact details: Tel:+44 (0) 1784 443186. Fax: +44 (0) 1784 414224. E-mail: n.morley@rhul.ac.uk

Summary

Miracidia are short-lived, non-feeding (lecithotrophic) free-living stages of trematodes, whose survival is potentially influenced by temperature. Climate change may result in elevated temperatures affecting trematode transmission. Therefore understanding their thermobiology forms an important step in determining the future dynamics of parasite populations. An empirical relationship exists between the mean expected life span of lecithotrophic larvae and the half life of their population (t0·5) and therefore t0·5 is a good indicator of glycogen utilization. In this study experimental data on the effects of temperature on miracidial survival were compiled from the scientific literature and evaluated in terms of metabolism using Q10 and Arrhenius activation energy (E* or μ). Temperature poorly influenced survival/metabolism with all miracidia having distinct zone(s) of thermostability. Overall there were few differences in Q10 and E* values between most species temperature ranges whilst there were only limited strain-specific variations in thermal responses of laboratory-maintained Schistosoma mansoni. Miracidia demonstrated a trend of greater thermal resistance than cercariae. In particular, comparative studies on 4 strains of the same species of miracidia and cercariae showed little correlation in thermal biology between the 2 life-history stages. The importance of these results for trematode transmission under global climate change is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. M., Mercer, J. G., Wilson, R. A. and Carter, N. P. (1982). Transmission of Schistosoma mansoni from man to snail-experimental studies of miracidial survival and infectivity in relation to larval age, water temperature, host size and host age. Parasitology 85, 339360.CrossRefGoogle Scholar
Andrews, C. and Chubb, J. C. (1980). Observations on the development of Bunodera luciopercae (Muller, 1776) (Trematoda, Allocreadiidae) under field and laboratory conditions. Journal of Fish Diseases 3, 481493.CrossRefGoogle Scholar
Boyunaga, H., Schmitz, M. G. J., Brouwers, J. F. H. M., Van Hellemond, J. J. and Tielens, A. G. M. (2001). Fasciola hepatica miracidia are dependent on respiration and endogenous glycogen degradation for their energy generation. Parasitology 122, 169173.CrossRefGoogle ScholarPubMed
Brandts, J. F. (1967). Heat effects on proteins and enzymes. In Thermobiology (ed. Rose, A. H.), pp. 2572. Academic Press, London, UK.Google Scholar
Chernin, E. (1974). Some host-finding attributes of Schistosoma mansoni miracidia. American Journal of Tropical Medicine & Hygiene 23, 320327.CrossRefGoogle ScholarPubMed
Christensen, N. O. (1980). A review of the influence of host-related and parasite-related factors and environmental conditions on the host-finding capacity of the trematode miracidium. Acta Tropica 37, 303318.Google Scholar
Christensen, N. O. and Nansen, P. (1976). The influence of temperature on the infectivity of Fasciola hepatica miracidia to Lymnaea truncatula. Journal of Parasitology 62, 698701.CrossRefGoogle ScholarPubMed
Chu, K. Y., Massoud, J. and Sabbaghian, H. (1966). Host-parasite relationship of Bulinus truncates and Schistosoma haematobium in Iran. 3. Effect of water temperature on the ability of miracidia to infect snails. Bulletin of the World Health Organization 34, 131133.Google Scholar
Chubb, J. C. (1979). Seasonal occurence of helminths in freshwater fishes. Part II. Trematoda. Advances in Parasitology 17, 141313.CrossRefGoogle Scholar
Costlow, J. D. jr., Bookhout, C. G. and Monroe, R. (1960). The effect of salinity and temperature on larval development of Sesarma cinereum (Bosc) reared in the laboratory. Biological Bulletin 118, 183202.CrossRefGoogle Scholar
Crozier, W. J. (1924). On biological oxidations as function of temperature. Journal of General Physiology 7, 189216.CrossRefGoogle ScholarPubMed
DeWitt, W. B. (1955). Influence of temperature on penetration of snail hosts by Schistosoma mansoni miracidia. Experimental Parasitology 4, 271276.CrossRefGoogle ScholarPubMed
Egborge, A. B. M. and Sagay, E. G. (1979). The distribution of phytoplankton and zooplankton in some Ibadan freshwater ecosystems. Polskie Archiwum Hydrobiologii 26, 323335.Google Scholar
Farley, J. (1962). The effects of temperature and pH on the longevity of Schistosomatium douthitti miracidia. Canadian Journal of Zoology 40, 615620.CrossRefGoogle Scholar
Ford, D. M., Nollen, P. M. and Romano, M. A. (1998). The effects of salinity, pH and temperature on the half-life and longevity of Echinostoma caproni miracidia. Journal of Helminthology 72, 325330.CrossRefGoogle ScholarPubMed
Ginetsinskaya, T. A. (1988). Trematodes, their Life Cycles, Biology and Evolution. Amerind Publishing Company, New Delhi, India.Google Scholar
Hira, P. R. (1968). Studies on the miracidia and cercariae of Schistosoma haematobium Bilharz. West African Sciences Association Journal 13, 165172.Google Scholar
Hoar, W. S. (1983). General and Comparative Physiology. Prentice-Hall, Englewood Cliffs, NJ, USA.Google Scholar
Ichii, S., Irie, Y. and Yasuraoka, K. (1990). Growth and fecundity of Schistosoma japonicum in mice maintained at different environmental temperatures. Japanese Journal of Experimental Medicine 60, 3944.Google ScholarPubMed
Koprivnikar, J. and Poulin, R. (2009). Interspecific and intraspecific variation in cercariae release. Journal of Parasitology 95, 1419.CrossRefGoogle ScholarPubMed
Lawson, J. R. and Wilson, R. A. (1980). The survival of the cercariae of Schistosoma mansoni in relation to water temperature and glycogen utilization. Parasitology 81, 337348.CrossRefGoogle ScholarPubMed
Lightner, L. K. (1975). Environmental temperature and the development of Schistosomatium douthitti in mice. Journal of Parasitology 61, 972973.CrossRefGoogle ScholarPubMed
Mangum, C. P., Oakes, M. J. and Shick, J. M. (1972). Rate-temperature responses in scyphozoan medusa and polyps. Marine Biology 15, 298303.CrossRefGoogle Scholar
Mas-Coma, S., Valero, M. A. and Bargues, M. D. (2009). Climate change effects on trematodiases, with emphasis on zoonotic fascioliasis and schistosomiasis. Veterinary Parasitology 163, 264280.CrossRefGoogle ScholarPubMed
Mason, P. R. and Fripp, P. J. (1976). Analysis of the movements of Schistosoma mansoni miracidia using dark-ground photography. Journal of Parasitology 62, 721727.CrossRefGoogle ScholarPubMed
McKindsey, C. W. and McLaughlin, J. D. (1994). Transmission of Cyclocoelum mutabile (Digenea) to snails- The influence of temperature on the egg and miracidium. Canadian Journal of Zoology 72, 17451751.CrossRefGoogle Scholar
Morgan, J. A. T., Dejong, R. J., Snyder, S. D., Mkoji, G. M. and Loker, E. S. (2001). Schistosoma mansoni and Biomphalaria: past history and future trends. Parasitology 123 (Suppl.), S211228.CrossRefGoogle ScholarPubMed
Morley, N. J. (2011 a). Thermodynamics of cercarial survival and metabolism in a changing climate. Parasitology 138, 14421452.CrossRefGoogle Scholar
Morley, N. J. (2011 b). Inbred laboratory cultures and natural trematode transmission under climate change. Trends in Parasitology 27, 286287.CrossRefGoogle ScholarPubMed
Newell, R. C. (1973). Environmental factors affecting the acclimatory responses of ectotherms. In Effects of Temperature on EctothermicOorganisms (ed. Wieser, W.), pp. 151164. Springer-Verlag, Berlin, Germany.CrossRefGoogle Scholar
Newport, G. R. and Weller, T. H. (1982). Miracidia infective for snails derived from eggs laid by adult Schistosoma mansoni in vitro. Parasitology 84, 481490.CrossRefGoogle ScholarPubMed
Nollen, P. M., Samizadeh-Yazd, A. and Snyder, D. E. (1979). The longevity and hatchability of Philophthalmus megalurus and Philophthalmus gralli miracidia in different environmental conditions. Journal of Parasitology 65, 772776.CrossRefGoogle ScholarPubMed
Pechenik, J. A. and Fried, B. (1995). Effect of temperature on survival and infectivity of Echinostoma trivolvis cercariae: a test of the energy limitation hypothesis. Parasitology 111, 373378.CrossRefGoogle Scholar
Poulin, R. (2006). Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology 132, 143151.CrossRefGoogle ScholarPubMed
Prosser, C. L. (1973). Comparative Animal Physiology, Saunders, Philadelphia, PA, USA.Google Scholar
Purnell, R. E. (1966). Host parasite relationships in schistosomiasis. III. The effect of temperature on the survival of Schistosoma mansoni miracidia and on the survival and infectivity of Schistosoma mansoni cercariae. Annals of Tropical Medicine & Parasitology 60, 182186.CrossRefGoogle Scholar
Ramajo-Martin, V. (1979). Effecto de la temperature y pH sobre la supervivencia y actividad del miracidio de Schistosoma bovis. Revista Iberica de Parasitologia 39, 251260.Google Scholar
Ramajo Martin, V. and Simon Martin, F. (1984). Supervivencia e infectividad de las cercarias de Schistosoma bovis en relacion con la edad y la temperatura. Revista Iberica de Parasitologia 44, 399407.Google Scholar
Randall, D., Burggren, W. and French, K. (2001). Eckert Animal Physiology. 5th Edn, Freeman and Company, New York, USA.Google Scholar
Rao, K. P. and Bullock, T. H. (1954). Q 10 as a function of size and habitat temperature in poikilotherms. American Naturalist 88, 3344.CrossRefGoogle Scholar
Samnaliev, P. (1977). Ecology of the larval and parthenite stages of Paramphistomum microbothrium. Part 2. Effect of temperature and phosphorous-32 on the life span of the miracidium. Khelmintologiya 3, 113121. (In Bulgarian.)Google Scholar
Smith, G. and Grenfell, B. T. (1984). The influence of water temperature and pH on the survival of Fasciola hepatica miracidia. Parasitology 88, 97104.CrossRefGoogle ScholarPubMed
Tielens, A. G. M., Van de Pas, F. A. M., Van den Heuvel, J. M. and Van den Bergh, S. G. (1991). The aerobic energy metabolism of Schistosoma mansoni miracidia. Molecular and Biochemical Parasitology 46, 181184.CrossRefGoogle ScholarPubMed
Ubelaker, J. E. and Olsen, O. W. (1970). Influence of temperature on survival rate and infectivity of miracidia of two species of Phyllodistomum trematoda to pelecypods. Journal of Invertebrate Pathology 16, 363366.CrossRefGoogle Scholar
Vanoverschelde, R. (1982). Studies on the life cycle of Himasthla militaris (Trematoda, Echinostomatidae)-influence of temperature and salinity on the life-span of the miracidium and the infection of the 1st intermediate host, Hydrobia ventrosa. Parasitology 84, 131135.CrossRefGoogle Scholar
Vernberg, F. J. and Vernberg, W. B. (1964). Metabolic adaptation of animals from different latitudes. Helgolander Meeresuntersuchungen 9, 476487.CrossRefGoogle Scholar
Vernberg, W. B. and Vernberg, F. J. (1965). Interrelationships between parasites and their hosts- I. Comparative metabolic patterns of thermal acclimation of larval trematodes with that of their host. Comparative Biochemistry and Physiology 14, 557566.CrossRefGoogle ScholarPubMed
Vernberg, F. J. and Vernberg, W. B. (1970). Lethal limits and the zoogeography of the faunal assemblages of coastal Carolina waters. Marine Biology 6, 2632.CrossRefGoogle Scholar
Waadu, G. D. B. and Chappell, L. H. (1991). Effect of water temperature on the ability of Diplostomum spathaceum miracidia to establish in Lymnaeid snails. Journal of Helminthology 65, 179185.CrossRefGoogle ScholarPubMed
Weina, P. J. (1986). Factors in developmental delay of Paragonimus kellicotti miracidia. Journal of Parasitology 72, 779.CrossRefGoogle ScholarPubMed
Wen, S.-T. (1961). The behaviour of the free-living stages of the larvae- miracidium and cercaria- of Schistosoma mansoni and S. haematobium, with special reference to their modes of host-finding and host-penetration. Ph.D. thesis (External), University of London, London, UK.Google Scholar
Wieser, W. (1973). Temperature relations of ectotherms: a speculative review. In Effects of Temperature on Ectothermic Organisms (ed. Wieser, W.), pp. 123. Springer-Verlag, Berlin, Germany.CrossRefGoogle Scholar
Wilson, R. A. and Denison, J. (1970). Studies on the activity of the miracidium of the common liver fluke, Fasciola hepatica. Comparative Biochemistry and Physiology 32, 301313.CrossRefGoogle ScholarPubMed
Young, R. E., Bundy, D. A. P. and Taylor, N. (1984). A thermostable zone in survivorship and metabolism of a tropical marine cercaria. Comparative Biochemistry and Physiology 78A, 793798.CrossRefGoogle Scholar
Zanotti-Magalhaes, E. M., de Paiva, S. M., Magalhaes, L. A. and de Carvalho, J. F. (1988). Viabilidade de miracidios de Schistosoma mansoni, obtidos de fezes e de granulomas hepaticos de camundongos experimentalmente infectados com a linhagem BH*. Revista de Saude Publica de Sao Paulo 22, 479483.CrossRefGoogle Scholar