Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T11:10:23.860Z Has data issue: false hasContentIssue false

Species-specific DNA probes for the identification of African trypanosomes in tsetse flies

Published online by Cambridge University Press:  06 April 2009

W. C. Gibson
Affiliation:
Department of Pathology, University of Bristol, School of Veterinary Science, Langford, Bristol BS18 7DU
P. Dukes
Affiliation:
Tsetse Research Laboratory, Department of Veterinary Medicine, Langford House, Langford, Bristol BS18 7DU
J. K. Gashumba
Affiliation:
Tsetse Research Laboratory, Department of Veterinary Medicine, Langford House, Langford, Bristol BS18 7DU

Summary

We have obtained 5 specific DNA probes for African trypanosomes of the subgenera Trypanozoon and Nannomonas. Each probe consists of one repeat unit of the major repetitive DNA (satellite DNA) of each species or intra-specific group. One probe hybridized with all members of subgenus Trypanozoon (except T. equiperdum which was not tested). In subgenus Nannomonas, one probe recognized T. simiae, but 3 probes were needed to identify all stocks of T. congolense available. Each of the 3 latter probes recognized trypanosomes from one of the 3 major groups of T. congolense previously defined by isoenzyme characterization, i.e. savannah, forest and Kenya coast types. As few as 100 trypanosomes could be unequivocally identified by dot blot hybridization and individual trypanosomes could be identified by in situ hybridization. We show how this simple methodology can be used in the field for the identification of immature and mature trypanosome infections in tsetse.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Buxton, P. A. (1955). The Natural History of Tsetse Flies. LSHTM Memoir No. 10. London: H. K. Lewis.Google Scholar
Feinberg, A. P. & Vogelstein, B. (1983). A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132, 613.Google Scholar
Gashumba, J. K. (1986). Two enzymically distinct stocks of Trypanosoma congolense. Research in Veterinary Science 40, 411–12.CrossRefGoogle ScholarPubMed
Gibson, W. C., Marshall, T. F. de C. & Godfrey, D. G. (1980). Numerical analysis of enzyme polymorphism: a new approach to the epidemiology and taxonomy of trypanosomes of the subgenus Trypanozoon. Advances in Parasitology 18, 175246.CrossRefGoogle Scholar
Gibson, W. C. & Miles, M. A. (1986). The karyotype and ploidy of Trypanosoma cruzi. EM BO Journal 5, 1299–305.Google ScholarPubMed
Gibson, W. C., White, T. C., Laird, P. W. & Borst, P. (1987). Stable introduction of exogenous DNA into Trypanosoma brucei. EMBO Journal 6, 2457–61.CrossRefGoogle ScholarPubMed
Hoare, C. A. (1972). The Trypanosomes of Mammals. Oxford: Blackwell Scientific Publications.Google Scholar
Johnson, P. J. & Borst, P. (1986). Mapping of VSG genes on large expression site chromosomes of Trypanosoma brucei separated by pulsed-field gradient electrophoresis. Gene 43, 213–20.CrossRefGoogle ScholarPubMed
Knowles, G., Betschart, B., Kukla, B. A., Scott, J. R. & Majiwa, P. A. O. (1988). Genetically discrete populations of Trypanosoma congolense from livestock on the Kenya Coast. Parasitology 96, 461–74.Google Scholar
Kukla, B. A., Majiwa, P. A. O., Young, J. R., Moloo, S. K. & Ole-Moiyoi, O. (1987). Use of species-specific DNA probes for detection and identification of trypanosome infections in tsetse flies. Parasitology 95, 116.Google Scholar
Majiwa, P. A. O., Masake, R., Nantulya, V. M., Hamers, R. & Matthyssens, G. (1985). Trypanosoma (Nannomonas) congolense: identification of two karyotypic groups. EMBO Journal 4, 3307–13.CrossRefGoogle ScholarPubMed
Majiwa, P. A. O. & Webster, P. (1987). A repetitive deoxyribonucleic acid sequence distinguishes Trypanosoma simiae from T. congolense. Parasitology 95, 543–58.Google Scholar
Massamba, N. N. & Williams, R. O. (1984). Distinction of African trypanosome species using nucleic acid hybridization. Parasitology 88, 5565.CrossRefGoogle ScholarPubMed
Miles, M. A. (1983). The epidemiology of South American trypanosomiasis - biochemical and immunological approaches and their relevance to control. Transactions of the Royal Society of Tropical Medicine and Hygiene 77, 523.CrossRefGoogle ScholarPubMed
Pardue, M. L. (1985). In situ hybridisation. In Nucleic acid Hybridisation. A Practical Approach (ed. Hames, B. D. and Higgens, S. J.), pp. 179202. Oxford: IRL Press.Google Scholar
Schwartz, D. C. & Cantor, C. R. (1984). Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37, 6775.Google Scholar
Sloof, P., Bos, J. L., Konings, A. F. J. M., Menke, H. H., Borst, P., Gutteridge, W. E. & Leon, W. (1983). Characterisation of satellite DNA in Trypanosoma brucei and T. cruzi. Journal of Molecular Biology 167, 121.CrossRefGoogle Scholar
Southern, E. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503–17.Google Scholar
van der Ploeg, L. H. T., Schwartz, D. C., Cantor, C. R. & Borst, P. (1984). Antigenic variation in Trypanosoma brucei analysed by electrophoretic separation of chromosome-sized DNA molecules. Cell 37, 7784.CrossRefGoogle Scholar
Wirth, D. F. & McMahon-Pratt, D. (1982). Rapid identification of Leishmania species by specific hybridisation of kinetoplast DNA in cutaneous lesions. Proceedings of the National Academy of Science, USA 79, 69997003.CrossRefGoogle ScholarPubMed
Young, C. J. & Godfrey, D. G. (1983). Enzyme polymorphism and the distribution of Trypanosoma congolense isolates. Annals of Tropical Medicine and Parasitology 77, 467–81.CrossRefGoogle ScholarPubMed