Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-20T03:01:48.228Z Has data issue: false hasContentIssue false

Setaria cervi dual specific phosphatase: characterization and its effect on eosinophil degranulation

Published online by Cambridge University Press:  15 June 2009

S. RATHAUR*
Affiliation:
Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
R. RAI
Affiliation:
Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
E. SRIKANTH
Affiliation:
Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
S. SRIVASTAVA
Affiliation:
Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
*
*Corresponding author. Tel: +91 9336463404. E-mail: surathaur@redifffmail.com

Summary

Setaria cervi, a bovine filarial parasite contains significant acid phosphatase (AcP) activity in its various life stages. Two forms of AcP were separated from somatic extract of adult female parasite using cation exchange, gel filtration and concavalin affinity chromatography. One form having a molecular mass of 79 kDa was characterized as dual specific protein tyrosine phosphatase (ScDSP) based on substrate specificity and inhibition studies. With various substrates tested, it showed significant activity in the order of phospho-L-tyrosine>pNPP>ADP>phospho-L-serine. Inhibition by orthovanadate, fluoride, molybdate, and zinc ions further confirms protein tyrosine phosphatase nature of the enzyme. Km and Vmax determined with various substrates were found to be 16·66 mM, 25·0 μM/ml/min with pNPP; 20·0 mM, 40·0 μM/ml/min with phospho-L-tyrosine and 27·0 mM, 25·0 μM/ml/min with phospho-L-serine. KI with pNPP and sodium orthovanadate (IC50 33·0 μM) was calculated to be 50·0 mM. Inhibition with pHMB, silver nitrate, DEPC and EDAC suggested the presence of cysteine, histidine and carboxylate residues at its active site. Cross-reactivity with W. bancrofti-infected sera was demonstrated by Western blotting. ScDSP showed elevated levels of IgE in chronic filarial sera using ELISA. Under in vitro conditions, ScDSP resulted in increased effector function of human eosinophils when stimulated by IgG, which showed a further decrease with increasing enzyme concentration. Results presented here suggest that S. cervi DSP should be further studied to determine its role in pathogenesis and the persistence of filarial parasite.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aguirre-Garcia, M. M., Escalona-Montano, A. R., Bakalara, N., Perez-Torres, A., Gutierrez-Kobeh, L. and Becker, I. (2006). Leishmania major: detection of membrane-bound protein tyrosine phosphatase. Parasitology 132, 641649.CrossRefGoogle ScholarPubMed
Allen, J. E. and Maizels, R. M. (1996). Immunology of helminth infection. International Archives of Allergy and Immunology 109, 3–10.CrossRefGoogle ScholarPubMed
Almeida Amaral, E. E. D., Firpo, R. B., Vannier-Santos, M. A. and Meyer Fernandes, J. R. (2006). Leishmania amazonensis: Characterization of an ecto-phosphatase activity. Experimental Parasitology 114, 334340.CrossRefGoogle ScholarPubMed
Amutha, B., Khire, J. M. and Khan, I. (1999). Active site characterization of the exo-N- acetyl-β-D- glucosaminidase from thermotolerant Bacillus Sp. NCIM 5120: involvement of tryptophan, histidine and carboxylate residues in catalytic activity. Biochimica et Biophysica Acta 1427, 121132.CrossRefGoogle ScholarPubMed
Anaya Ruiz, M., Perez Santos, J. L. M. and Talamas Rohana, P. (2003). An ecto-protein tyrosine phosphatase of Entamoeba histolytica induces cellular detachment by disruption of actin filaments in Hela cells. International Journal for Parasitology 23, 663670.CrossRefGoogle Scholar
Auriault, C., Caprom, I., Cesari, M. and Capron, A. (1983). Enhancement of eosinophil effector function by soluble factors released by S. mansoni: role of proteases. Journal of Immunology 131, 464470.CrossRefGoogle Scholar
Baca, O. G., Roman, M. J., Glew, R. H., Christner, R. F., Buhler, J. E. and Aragon, A. S. (1993). Acid phosphatase activity in Coxiella burnetii: a possible virulence factor. Infection and Immunity 61, 42324239.CrossRefGoogle ScholarPubMed
Bakalara, N., Seyfang, A., Davis, C. and Baltz, T. (1995 a). Characterization of a life-cycle-stage-regulated membrane protein tyrosine phosphatase in Trypanosoma brucei. European Journal of Biochemistry 234, 871877.CrossRefGoogle ScholarPubMed
Bakalara, N., Seyfang, A., Baltz, T. and Davis, C. (1995 b). Trypanosoma brucei and Trypanosoma cruzi: life cycle stage regulated protein tyrosine phosphatase activity. Experimental Parasitology 81, 302312.CrossRefGoogle ScholarPubMed
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle ScholarPubMed
Chen, X., Ansai, T., Awano, S., Iida, T., Barik, S. and Takehara, T. (1999). Isolation, cloning, and expression of an acid phosphatase containing phosphotyrosyl phosphatase activity from Prevotella intermedia. Journal of Bacteriology 181, 71077114.CrossRefGoogle ScholarPubMed
Denu, J. M. and Dixon, J. E. (1995). A catalytic mechanism for the dual-specific phosphatases. Proceedings of the National Academy of Sciences, USA 92, 59105914.CrossRefGoogle ScholarPubMed
Denu, J. M. and Dixon, J. E. (1998). Protein tyrosine phosphatases: mechanisms of catalysis and regulation. Current Opinion in Chemical Biology 2, 633641.CrossRefGoogle ScholarPubMed
DeVinney, R., Steele-Mortimer, O., and Finlay, B. B. (2000). Phosphatases and kinases delivered to the host cell by bacterial pathogens. Trends in Microbiology 8, 2933.CrossRefGoogle Scholar
Dolton, G. M., Sathish, J. G. and Mathews, R. J. (2006). Protein tyrosine phosphatases as negative regulators of the immune response. Biochemical Society Transactions 34, 10421045.CrossRefGoogle ScholarPubMed
Fernandes, E. C., Granjeiro, J. M., Taga, E. M., Meyer-Fernandes, J. M. and Aoyama, H. (2003). Phosphatase activity characterization on the surface of intact bloodstream forms of Trypanosoma brucei. Federation of European Microbiological Societies Letters 220, 197206.CrossRefGoogle Scholar
Fetterer, R. H. and Rhoads, M. L. (1980). Characterization of acid phosphatase and phosphorylcholine hydrolase in adult Haemonchus contortus. Journal of Parasitology 80, 2338.Google Scholar
Gomez, J. J. (1978). An improved method for phosphatase detection, Annals of Enzymology 32, 4447.Google Scholar
Guan, K. L., Broyles, S. S. and Dixon, J. E. (1991). A Tyr/Ser protein phosphatase encoded by Vaccinia virus. Nature, London 350, 359362.CrossRefGoogle ScholarPubMed
Guan, K. and Dixon, J. (1990). Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science 249, 553556.CrossRefGoogle ScholarPubMed
Hood, K. L., Tobin, J. F. and Yoon, C. (2002). Identification and characterization of two novel low-molecular-weight dual specificity phosphatases. Biochemical and Biophysical Research Communications 298, 545551.CrossRefGoogle ScholarPubMed
Kaushal, N. A., Kaushal, D. C. and Ghatak, S. (1987). Identification of antigenic proteins of Setaria cervi by immunoblotting technique. Immunological Investigations 16, 139149.CrossRefGoogle ScholarPubMed
Kharat, I. and Harinath, B. C. (1985). Histochemical distribution of acid phosphatase and acetylcholinestrase activity in in vivo and in vitro larval stages of Wuchereria bancrofti. Indian Journal of Experimental Biology 23, 7982.Google Scholar
Klion, A. D. and Nutman, T. B. (2003). The role of eosinophils in host defence against helminth parasites. Journal of Allergy and Clinical Immunology 13, 3037.Google Scholar
Koenderman, L., Kok, P. T. M., Hamelink, M. L., Verhoeven, A. J. and Bruijnzeel, P. L. B. (1988). An improved method for the isolation of eosinophilic granulocytes from peripheral blood of normal individuals. Journal of Leukocyte Biology 44, 7986.CrossRefGoogle ScholarPubMed
Kumar, R., Musiyenko, A., Cioffi, E., Oldenburg, A., Adams, B., Bitko, V., Sri Krishna, S. and Barik, S. (2004). A zinc-binding dual-specificity YVH1 phosphatase in the malaria parasite, Plasmodium falciparum, and its interaction with the nuclear protein, pescadillo. Molecular and Biochemical Parasitology 133, 297310.CrossRefGoogle ScholarPubMed
Kutuzov, M. A. and Andreeva, A. V. (2008). Protein Ser/Thr phosphatases of parasitic protozoa. Molecular and Biochemical Parasitology 161, 8190.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680685.CrossRefGoogle ScholarPubMed
Lunde, M. L., Paranjape, R., Lawley, T. J. and Ottesen, E. A. (1988). Filarial antigen in circulating immune complexes from patients with Wuchereria bancrofti filariasis. American Journal of Tropical Medicine and Hygiene 38, 366371.CrossRefGoogle ScholarPubMed
Maizels, R. M., Bundy, D. A., Selkirk, M. E., Smith, D. F. and Anderson, R. M. (1993). Immunological modulation and evasion by helminth parasites in human populations. Nature, London 365, 797805.CrossRefGoogle ScholarPubMed
Maki, J. and Yanagisawa, T. (1980). Acid phosphatase activity demonstrated in the nematodes, Dirofilaria immitis and Angiostrongylus cantonensis with special reference to the characters and distribution. Parasitology 80, 2338.CrossRefGoogle Scholar
Melrose, W. D. (2004). Lymphatic Filariasis: A Review 1862–2002. Warwick Educational Publishing Inc., Australia.Google Scholar
Menz, B., Winter, G., Ilg, T., Lottspeich, F. and Overath, P. (1991). Purification and characterization of a membrane bound acid phosphatase of Leishmania mexicana. Molecular and Biochemical Parasitology 47, l0l–108.CrossRefGoogle ScholarPubMed
Mustelin, T., Alonso, A., Bottini, N., Huynh, H., Rahmouni, S., Nika, K., Louis-dit-Sully, C., Tautz, L., Togo, S. H., Bruckner, S., Mena-Duran, A. V. and Maria al-Khouri, A. (2004). Protein tyrosine phosphatases in T cell physiology. Molecular Immuology 41, 687700.CrossRefGoogle ScholarPubMed
Ohkura, K., Suzuki, N., Ishihara, T. and Katsura, I. (2003). SDF-9, a protein tyrosine phosphatase-like molecule, regulates the L3/dauer developmental decision through hormonal signaling in C. elegans. Development 130, 32373248.CrossRefGoogle ScholarPubMed
Pokharel, D. R., Rai, R., Kodumudi, K. N., Reddy, M. V. R. and Rathaur, S. (2006). Vaccination with Setaria cervi 175 kDa collagenase induces high level of protection against Brugia malayi infection in jirds. Vaccine 24, 62086215.CrossRefGoogle ScholarPubMed
Rathaur, S., Robertson, B. D., Selkirk, M. E. and Maizels, R. M. (1987). Secretory acetylcholinesterase from Brugia malayi adult and microfilarial parasites. Molecular and Biochemical Parasitology 26, 257265.CrossRefGoogle ScholarPubMed
Remaley, A. T., Das, S., Campbell, P. I., LaRocca, G. M., Pope, M. T. and Glew, R. H. (1985). Characterization of Leishmania donovani acid phosphatases. The Journal of Biological Chemistry 260, 880886.CrossRefGoogle ScholarPubMed
Rodriguez, S. E. H., Pacheco, L. B., Rohana, P. T. and Encina, J. L. R. (2006). Cloning and partial characterization of Entamoeba histolytica PTPases. Biochemical and Biophysical Research Communications 342, 10141021.CrossRefGoogle Scholar
Sharma, S., Mishra, S. and Rathaur, S. (1998). Secretory acetylcholinesterase of Setaria cervi microfilariae and its antigenic cross-reactivity with Wuchereria bancrofti. Tropical Medicine & International Health 3, 4651.CrossRefGoogle ScholarPubMed
Shin, M. H., Kita, H., Park, H. P. and Seoh, J. Y. (2001). Cysteine protease secreted by Paragonimus westermani attenuates effector functions of human eosinophils stimulated with immunoglobulin G. Infection and Immunity 69, 15991604.CrossRefGoogle ScholarPubMed
Singh, A. and Rathaur, S. (2005). Identification and characterization of a selenium-dependent glutathione peroxidase in Setaria cervi. Biochemical and Biophysical Research Communications 331, 10691074.CrossRefGoogle ScholarPubMed
Taga, E. M. and Etten, R. L. V. (1982). Human liver acid phosphatases: purification and properties of a low molecular weight isoenzyme. Archives of Biochemistry and Biophysics 214, 505515.CrossRefGoogle ScholarPubMed
Wimmer, M., Schimid, B., Tag, C. and Hofer, H. W. (1998). Ascaris suum: protein phosphotyrosine phosphatases in oocytes and developing stages. Experimental Parasitology 88, 139145.CrossRefGoogle ScholarPubMed
Zhang, Z. Y. (2001). Protein tyrosine phosphatases: prospects for therapeutics. Current Opinion in Chemical Biology 5, 416423.CrossRefGoogle ScholarPubMed