Skip to main content Accessibility help
×
Home

The role of chemokines in severe malaria: more than meets the eye

  • LISA J. IOANNIDIS (a1), CATHERINE Q. NIE (a2) and DIANA S. HANSEN (a1)

Summary

Plasmodium falciparum malaria is responsible for over 250 million clinical cases every year worldwide. Severe malaria cases might present with a range of disease syndromes including acute respiratory distress, metabolic acidosis, hypoglycaemia, renal failure, anaemia, pulmonary oedema, cerebral malaria (CM) and placental malaria (PM) in pregnant women. Two main determinants of severe malaria have been identified: sequestration of parasitized red blood cells and strong pro-inflammatory responses. Increasing evidence from human studies and malaria infection animal models revealed the presence of host leucocytes at the site of parasite sequestration in brain blood vessels as well as placental tissue in complicated malaria cases. These observations suggested that apart from secreting cytokines, leucocytes might also contribute to disease by migrating to the site of parasite sequestration thereby exacerbating organ-specific inflammation. This evidence attracted substantial interest in identifying trafficking pathways by which inflammatory leucocytes are recruited to target organs during severe malaria syndromes. Chemo-attractant cytokines or chemokines are the key regulators of leucocyte trafficking and their potential contribution to disease has recently received considerable attention. This review summarizes the main findings to date, investigating the role of chemokines in severe malaria and the implication of these responses for the induction of pathogenesis and immunity to infection.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The role of chemokines in severe malaria: more than meets the eye
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The role of chemokines in severe malaria: more than meets the eye
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The role of chemokines in severe malaria: more than meets the eye
      Available formats
      ×

Copyright

The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence .

Corresponding author

* Corresponding author: The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia. E-mail: hansen@wehi.edu.au

References

Hide All
Abrams, E. T., Brown, H., Chensue, S. W., Turner, G. D. H., Tadesse, E., Lema, V. M., Molyneux, M. E., Rochford, R., Meshnick, S. R. and Rogerson, S. J. (2003). Host response to malaria during pregnancy: placental monocyte recruitment is associated with elevated beta chemokine expression. Journal of Immunology 170, 27592764.
Angiolillo, A. L., Sgadari, C., Taub, D. D., Liao, F., Farber, J. M., Maheshwari, S., Kleinman, H. K., Reaman, G. H. and Tosato, G. (1995). Human interferon-inducible protein-10 is a potent inhibitor of angiogenesis in vivo . Journal of Experimental Medicine 182, 155162. doi: 10.1084/jem.182.1.155.
Annunziato, F., Cosmi, L., Galli, G., Beltrame, C., Romagnani, P., Manetti, R., Romagnani, S. and Maggi, E. (1999). Assessment of chemokine receptor expression by human Th1 and Th2 cells in vitro and in vivo . Journal of Leukocyte Biology 65, 691699.
Armah, H. B., Wilson, N. O., Sarfo, B. Y., Powell, M. D., Bond, V. C., Anderson, W., Adjei, A. A., Gyasi, R. K., Tettey, Y., Wiredu, E. K., Tongren, J. E., Udhayakumar, V. and Stiles, J. K. (2007). Cerebrospinal fluid and serum biomarkers of cerebral malaria mortality in Ghanaian children. Malaria Journal 6, 147. doi: 10.1186/1475-2875-6-147.
Ayimba, E., Hegewald, J., Segbena, A. Y., Gantin, R. G., Lechner, C. J., Agosssou, A., Banla, M. and Soboslay, P. T. (2011). Proinflammatory and regulatory cytokines and chemokines in infants with uncomplicated and severe Plasmodium falciparum malaria. Clinical and Experimental Immunology 166, 218226. doi: 10.1111/j.1365-2249.2011.04474.x.
Belnoue, E., Kayibanda, M., Vigario, A. M., Deschemin, J. C., van Rooijen, N., Viguier, M., Snounou, G. and Renia, L. (2002). On the pathogenic role of brain-sequestered αβ CD8+ T cells in experimental cerebral malaria. Journal of Immunology 169, 63696375.
Belnoue, E., Costa, F. T., Vigario, A. M., Voza, T., Gonnet, F., Landau, I., Van Rooijen, N., Mack, M., Kuziel, W. A. and Renia, L. (2003 a). Chemokine receptor CCR2 is not essential for the development of experimental cerebral malaria. Infection and Immunity 71, 36483651.
Belnoue, E., Kayibanda, M., Deschemin, J. C., Viguier, M., Mack, M., Kuziel, W. A. and Renia, L. (2003 b). CCR5 deficiency decreases susceptibility to experimental cerebral malaria. Blood 101, 42534259.
Boström, S., Ibitokou, S., Oesterholt, M., Schmiegelow, C., Persson, J.-O., Minja, D., Lusingu, J., Lemnge, M., Fievet, N., Deloron, P., Luty, A. J. F. and Troye-Blomberg, M. (2012). Biomarkers of Plasmodium falciparum infection during pregnancy in women living in Northeastern Tanzania. PLoS ONE 7, e48763. doi: 10.1371/journal.pone.0048763.
Bromley, S. K., Mempel, T. R. and Luster, A. D. (2008). Orchestrating the orchestrators: chemokines in control of T cell traffic. Nature Immunology 9, 970980. doi: 10.1038/ni.f.213.
Burgmann, H., Hollenstein, U., Wenisch, C., Thalhammer, F., Looareesuwan, S. and Graninger, W. (1995). Serum concentrations of MIP-1α and IL-8 in patients suffering from acute Plasmodium falciparum malaria. Clinical Immunology and Immunopathology 76, 3236. doi: 10.1006/clin.1995.1084.
Campanella, G. S., Tager, A. M., El Khoury, J. K., Thomas, S. Y., Abrazinski, T. A., Manice, L. A., Colvin, R. A. and Luster, A. D. (2008). Chemokine receptor CXCR3 and its ligands CXCL9 and CXCL10 are required for the development of murine cerebral malaria. Proceedings of the National Academy of Sciences USA 105, 48144819.
Chaisavaneeyakorn, S., Moore, J. M., Mirel, L., Othoro, C., Otieno, J., Chaiyaroj, S. C., Shi, Y. P., Nahlen, B. L., Lal, A. A. and Udhayakumar, V. (2003). Levels of macrophage inflammatory protein 1α (MIP-1α) and MIP-1β in intervillous blood plasma samples from women with placental malaria and human immunodeficiency virus infection. Clinical and Diagnostic Laboratory Immunology 10, 631636. doi: 10.1128/cdli.10.4.631-636.2003.
Chakravorty, S. J., Carret, C., Nash, G. B., Ivens, A., Szestak, T. and Craig, A. G. (2007). Altered phenotype and gene transcription in endothelial cells, induced by Plasmodium falciparum-infected red blood cells: pathogenic or protective? International Journal for Parasitology 37, 975987. doi: 10.1016/j.ijpara.2007.02.006.
Chotivanich, K., Udomsangpetch, R., McGready, R., Proux, S., Newton, P., Pukrittayakamee, S., Looareesuwan, S. and White, N. J. (2002). Central role of the spleen in malaria parasite clearance. Journal of Infectious Diseases 185, 15381541.
Clark, C. J. and Phillips, R. S. (2011). Cerebral malaria protection in mice by species-specific Plasmodium co-infection is associated with reduced CC chemokine levels in the brain. Parasite Immunology 33, 637641. doi: 10.1111/j.1365-3024.2011.01329.x.
Coltel, N., Combes, V., Hunt, N. H. and Grau, G. E. (2004). Cerebral malaria – a neurovascular pathology with many riddles still to be solved. Current Neurovascular Research 1, 91110. doi: 10.2174/1567202043480116.
Desai, M., ter Kuile, F. O., Nosten, F., McGready, R., Asamoa, K., Brabin, B. and Newman, R. D. (2007). Epidemiology and burden of malaria in pregnancy. Lancet Infectious Diseases 7, 93104. doi: 10.1016/s1473-3099(07)70021-x.
Dong, S., Kurtis, J. D., Pond-Tor, S., Kabyemela, E., Duffy, P. E. and Fried, M. (2012). CXCL9 response to malaria during pregnancy is associated with low-birth-weight deliveries. Infection and Immunity 80, 30343038. doi: 10.1128/iai.00220-12.
El-Assaad, F., Wheway, J., Mitchell, A. J., Lou, J., Hunt, N. H., Combes, V. and Grau, G. E. (2013). Cytoadherence of Plasmodium berghei-infected red blood cells to murine brain and lung microvascular endothelial cells in vitro . Infection and Immunity. doi: 10.1128/iai.00428-13.
Engwerda, C. R., Mynott, T. L., Sawhney, S., De Souza, J. B., Bickle, Q. D. and Kaye, P. M. (2002). Locally up-regulated lymphotoxin α, not systemic tumor necrosis factor α, is the principle mediator of murine cerebral malaria. Journal of Experimental Medicine 195, 13711377.
Evans, K. J., Hansen, D. S., van Rooijen, N., Buckingham, L. A. and Schofield, L. (2006). Severe malarial anemia of low parasite burden in rodent models results from accelerated clearance of uninfected erythrocytes. Blood 107, 11921199.
Galbraith, R. M., Faulk, W. P., Galbraith, G. M. P., Holbrook, T. W. and Bray, R. S. (1980). Human materno-foetal relationship in malaria. 1. Identification of pigment and parasites in the placenta. Transactions of the Royal Society of Tropical Medicine and Hygiene 74, 5260. doi: 10.1016/0035-9203(80)90011-5.
Garnica, M. R., Souto, J. T., Silva, J. S. and de Andrade, H. F. Jr. (2002). Stromal cell derived factor 1 synthesis by spleen cells in rodent malaria, and the effects of in vivo supplementation of SDF-1α and CXCR4 receptor blocker. Immunology Letters 83, 4753.
Gerszten, R. E., Garcia-Zepeda, E. A., Lim, Y. C., Yoshida, M., Ding, H. A., Gimbrone, M. A., Luster, A. D., Luscinskas, F. W. and Rosenzweig, A. (1999). MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 398, 718723.
Grau, G. E., Piguet, P. F., Engers, H. D., Louis, J. A., Vassalli, P. and Lambert, P. H. (1986). L3T4+ T lymphocytes play a major role in the pathogenesis of murine cerebral malaria. Journal of Immunology 137, 23482354.
Grau, G. E., Fajardo, L. F., Piguet, P. F., Allet, B., Lambert, P. H. and Vassalli, P. (1987). Tumor necrosis factor (cachectin) as an essential mediator in murine cerebral malaria. Science 237, 12101212.
Grau, G. E., Heremans, H., Piguet, P. F., Pointaire, P., Lambert, P. H., Billiau, A. and Vassalli, P. (1989). Monoclonal antibody against interferon γ can prevent experimental cerebral malaria and its associated overproduction of tumor necrosis factor. Proceedings of the National Academy of Sciences USA 86, 55725574.
Grau, G. E., Tacchini-Cottier, F., Vesin, C., Milon, G., Lou, J. N., Piguet, P. F. and Juillard, P. (1993). TNF-induced microvascular pathology: active role for platelets and importance of the LFA-1/ICAM-1 interaction. European Cytokine Network 4, 415419.
Grau, G. E., Mackenzie, C. D., Carr, R. A., Redard, M., Pizzolato, G., Allasia, C., Cataldo, C., Taylor, T. E. and Molyneux, M. E. (2003). Platelet accumulation in brain microvessels in fatal pediatric cerebral malaria. Journal of Infectious Diseases 187, 461466.
Hansen, D. S. (2012). Inflammatory responses associated with the induction of cerebral malaria: lessons from experimental murine models. PLoS Pathogens 8, e1003045. doi: 10.1371/journal.ppat.1003045.
Hansen, D. S., Siomos, M. A., Buckingham, L., Scalzo, A. A. and Schofield, L. (2003). Regulation of murine cerebral malaria pathogenesis by CD1d-restricted NKT cells and the natural killer complex. Immunity 18, 391402.
Hansen, D. S., Evans, K. J., D'Ombrain, M. C., Bernard, N. J., Sexton, A. C., Buckingham, L., Scalzo, A. A. and Schofield, L. (2005). The natural killer complex regulates severe malarial pathogenesis and influences acquired immune responses to Plasmodium berghei-ANKA. Infection and Immunity 73, 22882297.
Hansen, D. S., Bernard, N. J., Nie, C. Q. and Schofield, L. (2007). NK cells stimulate recruitment of CXCR3+ T cells to the brain during Plasmodium berghei-mediated cerebral malaria. Journal of Immunology 178, 57795788.
Hanum, P. S., Hayano, M. and Kojima, S. (2003). Cytokine and chemokine responses in a cerebral malaria-susceptible or -resistant strain of mice to Plasmodium berghei-ANKA infection: early chemokine expression in the brain. International Immunology 15, 633640.
Hunt, N. H. and Grau, G. E. (2003). Cytokines: accelerators and brakes in the pathogenesis of cerebral malaria. Trends in Immunology 24, 491499.
Jain, V., Armah, H. B., Tongren, J. E., Ned, R. M., Wilson, N. O., Crawford, S., Joel, P. K., Singh, M. P., Nagpal, A. C., Dash, A. P., Udhayakumar, V., Singh, N. and Stiles, J. K. (2008). Plasma IP-10, apoptotic and angiogenic factors associated with fatal cerebral malaria in India. Malaria Journal 7, 83. doi: 10.1186/1475-2875-7-83.
John, C. C., Opika-Opoka, R., Byarugaba, J., Idro, R. and Boivin, M. J. (2006). Low levels of RANTES are associated with mortality in children with cerebral malaria. Journal of Infectious Diseases 194, 837845. doi: 10.1086/506623.
John, C. C., Panoskaltsis-Mortari, A., Opoka, R. O., Park, G. S., Orchard, P. J., Jurek, A. M., Idro, R., Byarugaba, J. and Boivin, M. J. (2008 a). Cerebrospinal fluid cytokine levels and cognitive impairment in cerebral malaria. American Journal of Tropical Medicine and Hygiene 78, 198205.
John, C. C., Park, G. S., Sam-Agudu, N., Opoka, R. O. and Bolvin, M. J. (2008 b). Elevated serum levels of IL-1rα in children with Plasmodium falciparum malaria are associated with increased severity of disease. Cytokine 41, 204208. doi: 10.1016/j.cyto.2007.12.008.
Kim, C. H., Rott, L., Kunkel, E. J., Genovese, M. C., Andrew, D. P., Wu, L. J. and Butcher, E. C. (2001). Rules of chemokine receptor association with T cell polarization in vivo . Journal of Clinical Investigation 108, 13311339. doi: 10.1172/jci13543.
Kurtzhals, J. A. L., Rodrigues, O., Addae, M., Commey, J. O. O., Nkrumah, F. K. and Hviid, L. (1997). Reversible suppression of bone marrow response to erythropoietin in Plasmodium falciparum malaria. British Journal of Haematology 97, 169174. doi: 10.1046/j.1365-2141.1997.82654.x.
Looareesuwan, S., Davis, T. M. E., Pukrittayakamee, S., Supanaranond, W., Desakorn, V., Silamut, K., Krishna, S., Boonamrung, S. and White, N. J. (1991). Erythrocyte survival in severe falciparum malaria. Acta Tropica 48, 263270. doi: 10.1016/0001-706x(91)90014-b.
Looareesuwan, S., Suntharasamai, P., Webster, H. K. and Ho, M. (1993). Malaria in splenectomized patients: report of four cases and review. Clinical Infectious Diseases 16, 361366.
Lopera-Mesa, T. M., Mita-Mendoza, N. K., van de Hoef, D. L., Doumbia, S., Konate, D., Doumbouya, M., Gu, W., Traore, K., Diakite, S. A. S., Remaley, A. T., Anderson, J. M., Rodriguez, A., Fay, M. P., Long, C. A., Diakite, M. and Fairhurst, R. M. (2012). Plasma uric acid levels correlate with inflammation and disease severity in Malian children with Plasmodium falciparum malaria. PLoS ONE 7, e46424. doi: 10.1371/journal.pone.0046424.
Lucchi, N. W., Peterson, D. S. and Moore, J. M. (2008). Immunologic activation of human syncytiotrophoblast by Plasmodium falciparum . Malaria Journal 7, 4249. doi: 10.1186/1475-2875-7-42.
Lucchi, N. W., Sarr, A., Owino, S. O., Mwalimu, S. M., Peterson, D. S. and Moore, J. M. (2011). Natural hemozoin stimulates syncytiotrophoblast to secrete chemokines and recruit peripheral blood mononuclear cells. Placenta 32, 579585. doi: 10.1016/j.placenta.2011.05.003.
Lundie, R. J., de Koning-Ward, T. F., Davey, G. M., Nie, C. Q., Hansen, D. S., Lau, L. S., Mintern, J. D., Belz, G. T., Schofield, L., Carbone, F. R., Villadangos, J. A., Crabb, B. S. and Heath, W. R. (2008). Blood-stage Plasmodium infection induces CD8+ T lymphocytes to parasite-expressed antigens, largely regulated by CD8α + dendritic cells. Proceedings of the National Academy of Sciences USA 105, 1450914514.
Luster, A. D. (1998). Chemokines – chemotactic cytokines that mediate inflammation. New England Journal of Medicine 338, 436445.
Luster, A. D., Greenberg, S. M. and Leder, P. (1995). The IP-10 chemokine binds to a specific cell-surface heparan-sulfate site shared with platelet factor-4 and inhibits endothelial cell proliferation. Journal of Experimental Medicine 182, 219231. doi: 10.1084/jem.182.1.219.
Ma, N. L., Hunt, N. H., Madigan, M. C. and ChanLing, T. (1996). Correlation between enhanced vascular permeability, up-regulation of cellular adhesion molecules and monocyte adhesion to the endothelium in the retina during the development of fatal murine cerebral malaria. American Journal of Pathology 149, 17451762.
Marsh, K., Forster, D., Waruiru, C., Mwangi, I., Winstanley, M., Marsh, V., Newton, C., Winstanley, P., Warn, P., Peshu, N., Pasvol, G. and Snow, R. (1995). Indicators of life-threatening malaria in African children. New England Journal of Medicine 332, 13991404. doi: 10.1056/nejm199505253322102.
McGregor, I. A. (1984). Epidemiology, malaria and pregnancy. American Journal of Tropical Medicine and Hygiene 33, 517525.
Miller, L. H., Baruch, D. I., Marsh, K. and Doumbo, O. K. (2002). The pathogenic basis of malaria. Nature 415, 673679.
Miu, J., Mitchell, A. J., Muller, M., Carter, S. L., Manders, P. M., McQuillan, J. A., Saunders, B. M., Ball, H. J., Lu, B., Campbell, I. L. and Hunt, N. H. (2008). Chemokine gene expression during fatal murine cerebral malaria and protection due to CXCR3 deficiency. Journal of Immunology 180, 12171230.
Molyneux, M. E., Engelmann, H., Taylor, T. E., Wirima, J. J., Aderka, D., Wallach, D. and Grau, G. E. (1993). Circulating plasma receptors for tumour necrosis factor in Malawian children with severe falciparum malaria. Cytokine 5, 604609.
Mora, J. R. and von Andrian, U. H. (2006). T-cell homing specificity and plasticity: new concepts and future challenges. Trends in Immunology 27, 235243. doi: 10.1016/j.it.2006.03.007.
Moser, B., Wolf, M., Walz, A. and Loetscher, P. (2004). Chemokines: multiple levels of leukocyte migration control. Trends in Immunology 25, 7584. doi: 10.1016/j.it.2003.12.005.
Muehlenbachs, A., Fried, M., Lachowitzer, J., Mutabingwa, T. K. and Duffy, P. E. (2007). Genome-wide expression analysis of placental malaria reveals features of lymphoid neogenesis during chronic infection. Journal of Immunology 179, 557565.
Murphy, P. M. (2002). International Union of Pharmacology. Update on chemokine receptor nomenclature. Pharmacological Reviews 54, 227229. doi: 10.1124/pr.54.2.227.
Murray, C. J. L., Rosenfeld, L. C., Lim, S. S., Andrews, K. G., Foreman, K. J., Haring, D., Fullman, N., Naghavi, M., Lozano, R. and Lopez, A. D. (2012). Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet 379, 413431.
Neres, R., Marinho, C. R. F., Goncalves, L. A., Catarino, M. B. and Penha-Goncalves, C. (2008). Pregnancy outcome and placenta pathology in Plasmodium berghei-ANKA-infected mice reproduce the pathogenesis of severe malaria in pregnant women. PLoS ONE 3, e1608. doi: 10.1371/journal.pone.0001608.
Nie, C. Q., Bernard, N. J., Norman, M. U., Amante, F. H., Lundie, R. J., Crabb, B. S., Heath, W. R., Engwerda, C. R., Hickey, M. J., Schofield, L. and Hansen, D. S. (2009). IP-10-mediated T cell homing promotes cerebral inflammation over splenic immunity to malaria infection. PLoS Pathogens 5, e1000369.
Nitcheu, J., Bonduelle, O., Combadiere, C., Tefit, M., Seilhean, D., Mazier, D. and Combadiere, B. (2003). Perforin-dependent brain-infiltrating cytotoxic CD8+ T lymphocytes mediate experimental cerebral malaria pathogenesis. Journal of Immunology 170, 22212228.
Ochiel, D. O., Awandare, G. A., Keller, C. C., Hittner, J. B., Kremsner, P. G., Weinberg, J. B. and Perkins, D. J. (2005). Differential regulation of beta-chemokines in children with Plasmodium falciparum malaria. Infection and Immunity 73, 41904197. 73/7/4190 doi: 10.1128/IAI.73.7.4190-4197.2005.
Ordi, J., Ismail, M. R., Ventura, P. J., Kahigwa, E., Hirt, R., Cardesa, A., Alonso, P. L. and Menendez, C. (1998). Massive chronic intervillositis of the placenta associated with malaria infection. American Journal of Surgical Pathology 22, 10061011. doi: 10.1097/00000478-199808000-00011.
Ordi, J., Menendez, C., Ismail, M. R., Ventura, P. J., Palacin, A., Kahigwa, E., Ferrer, B., Cardesa, A. and Alonso, P. L. (2001). Placental malaria is associated with cell-mediated inflammatory responses with selective absence of natural killer cells. Journal of Infectious Diseases 183, 11001107. doi: 10.1086/319295.
Patnaik, J. K., Das, B. S., Mishra, S. K., Mohanty, S., Satpathy, S. K. and Mohanty, D. (1994). Vascular clogging, mononuclear cell margination, and enhanced vascular-permeability in the pathogenesiss of human cerebral malaria. American Journal of Tropical Medicine and Hygiene 51, 642647.
Pongponratn, E., Turner, G. D., Day, N. P., Phu, N. H., Simpson, J. A., Stepniewska, K., Mai, N. T., Viriyavejakul, P., Looareesuwan, S., Hien, T. T., Ferguson, D. J. and White, N. J. (2003). An ultrastructural study of the brain in fatal Plasmodium falciparum malaria. American Journal of Tropical Medicine and Hygiene 69, 345359.
Porta, J., Carota, A., Pizzolato, G. P., Wildi, E., Widmer, M. C., Margairaz, C. and Grau, G. E. (1993). Immunopathological changes in human cerebral malaria. Clinical Neuropathology 12, 142146.
Renia, L., Potter, S. M., Mauduit, M., Rosa, D. S., Kayibanda, M., Deschemin, J. C., Snounou, G. and Gruner, A. C. (2006). Pathogenic T cells in cerebral malaria. International Journal for Parasitology 36, 547554.
Rodrigues-Duarte, L., de Moraes, L. V., Barboza, R., Marinho, C. R. F., Franke-Fayard, B., Janse, C. J. and Penha-Goncalves, C. (2012). Distinct placental malaria pathology caused by different Plasmodium berghei lines that fail to induce cerebral malaria in the C57BL/6 mouse. Malaria Journal 11, 231. doi: 10.1186/1475-2875-11-231.
Rogerson, S. J., Brown, H. C., Pollina, E., Abrams, E. T., Tadesse, E., Lema, V. M. and Molyneux, M. E. (2003 a). Placental tumor necrosis factor α but not γ interferon is associated with placental malaria and low birth weight in Malawian women. Infection and Immunity 71, 267270.
Rogerson, S. J., Pollina, E., Getachew, A., Tadesse, E., Lema, V. M. and Molyneux, M. E. (2003 b). Placental monocyte infiltrates in response to Plasmodium falciparum malaria infection and their association with adverse pregnancy outcomes. American Journal of Tropical Medicine and Hygiene 68, 115119.
Rollins, B. J. (1997). Chemokines. Blood 90, 909928.
Romagnani, P., Annunziato, F., Lasagni, L., Lazzeri, E., Beltrame, C., Francalanci, M., Uguccioni, M., Galli, G., Cosmi, L., Maurenzig, L., Baggiolini, M., Maggi, E., Romagnani, S. and Serio, M. (2001). Cell cycle-dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity. Journal of Clinical Investigations 107, 5363. doi: 10.1172/jci9775.
Rot, A. (1992). Endothelial cell binding of NAP-1/IL-8 – role in neutrophil emigration. Immunology Today 13, 291294. doi: 10.1016/0167-5699(92)90039-a.
Rot, A. and von Andrian, U. H. (2004). Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annual Review of Immunology 22, 891928. doi: 10.1146/annurev.immunol.22.012703.104543.
Ryg-Cornejo, V., Nie, C. Q., Bernard, N. J., Lundie, R. J., Evans, K. J., Crabb, B. S., Schofield, L. and Hansen, D. S. (2013). NK cells and conventional dendritic cells engage in reciprocal activation for the induction of inflammatory responses during Plasmodium berghei-ANKA infection. Immunobiology 218, 263271. doi: 10.1016/j.imbio.2012.05.018.
Sallusto, F., Lanzavecchia, A. and Mackay, C. R. (1998). Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses. Immunology Today 19, 568574.
Sallusto, F., Mackay, C. R. and Lanzavecchia, A. (2000). The role of chemokine receptors in primary, effector, and memory immune responses. Annual Review of Immunology 18, 593620. doi: 10.1146/annurev.immunol.18.1.593.
Sarfo, B. Y., Singh, S., Lillard, J. W., Quarshie, A., Gyasi, R. K., Armah, H., Adjei, A. A., Jolly, P. and Stiles, J. K. (2004). The cerebral-malaria-associated expression of RANTES, CCR3 and CCR5 in post-mortem tissue samples. Annals of Tropical Medicine and Parasitology 98, 297303.
Sarfo, B. Y., Armah, H. B., Irune, I., Adjei, A. A., Olver, C. S., Singh, S., Lillard, J. W. Jr. and Stiles, J. K. (2005). Plasmodium yoelii 17XL infection up-regulates RANTES, CCR1, CCR3 and CCR5 expression, and induces ultrastructural changes in the cerebellum. Malaria Journal 4, 63. doi: 10.1186/1475-2875-4-63.
Sayles, P. C., Yanez, D. M. and Wassom, D. L. (1993). Plasmodium yoelii: splenectomy alters the antibody responses of infected mice. Experimental Parasitology 76, 377384.
Schofield, L. and Grau, G. E. (2005). Immunological processes in malaria pathogenesis. Nature Reviews Immunology 5, 722735.
Serbina, N. V., Jia, T., Hohl, T. M. and Pamer, E. G. (2008). Monocyte-mediated defense against microbial pathogens. Annual Reviews Immunology 26, 421452. doi: 10.1146/annurev.immunol.26.021607.090326.
Sexton, A. C., Good, R. T., Hansen, D. S., D'Ombrain, M. C., Buckingham, L., Simpson, K. and Schofield, L. (2004). Transcriptional profiling reveals suppressed erythropoiesis, up-regulated glycolysis, and interferon-associated responses in murine malaria. Journal of Infectious Diseases 189, 12451256.
Sponaas, A. M., Freitas do Rosario, A. P., Voisine, C., Mastelic, B., Thompson, J., Koernig, S., Jarra, W., Renia, L., Mauduit, M., Potocnik, A. J. and Langhorne, J. (2009). Migrating monocytes recruited to the spleen play an important role in control of blood stage malaria. Blood 114, 55225531. doi: 10.1182/blood-2009-04-217489.
Srivastava, K., Cockburn, I. A., Swaim, A., Thompson, L. E., Tripathi, A., Fletcher, C. A., Shirk, E. M., Sun, H., Kowalska, M. A., Fox-Talbot, K., Sullivan, D., Zavala, F. and Morrell, C. N. (2008). Platelet factor 4 mediates inflammation in experimental cerebral malaria. Cell Host Microbe 4, 179187. doi: 10.1016/j.chom.2008.07.003.
Srivastava, K., Field, D. J., Aggrey, A., Yamakuchi, M. and Morrell, C. N. (2010). Platelet factor 4 regulation of monocyte KLF4 in experimental cerebral malaria. PLoS ONE 5, e10413. doi: 10.1371/journal.pone.0010413.
Steketee, R. W., Nahlen, B. L., Parise, M. E. and Menendez, C. (2001). The burden of malaria in pregnancy in malaria-endemic areas. American Journal of Tropical Medicine and Hygiene 64, 2835.
Suguitan, A. L., Leke, R. G. F., Fouda, G., Zhou, A. N., Thuita, L., Metenou, S., Fogako, J., Megnekou, R. and Taylor, D. W. (2003). Changes in the levels of chemokines and cytokines in the placentas of women with Plasmodium falciparum malaria. Journal of Infectious Diseases 188, 10741082.
Tanaka, Y., Adams, D. H. and Shaw, S. (1993). Proteoglycans on endothelial cells present adhesion-inducing cytokines to leukocytes. Immunology Today 14, 111115. doi: 10.1016/0167-5699(93)90209-4.
Taylor, T. E., Fu, W. J., Carr, R. A., Whitten, R. O., Mueller, J. S., Fosiko, N. G., Lewallen, S., Liomba, N. G. and Molyneux, M. E. (2004). Differentiating the pathologies of cerebral malaria by postmortem parasite counts. Nature Medicine 10, 143145.
Tripathi, A. K., Sha, W., Shulaev, V., Stins, M. F. and Sullivan, D. J. Jr. (2009). Plasmodium falciparum-infected erythrocytes induce NF-κB regulated inflammatory pathways in human cerebral endothelium. Blood 114, 42434252. doi: 10.1182/blood-2009-06-226415.
Van den Steen, P. E., Deroost, K., Aelst, I. V., Geurts, N., Martens, E., Struyf, S., Nie, C. Q., Hansen, D. S., Matthys, P., Damme, J. V. and Opdenakker, G. (2008). CXCR3 determines strain susceptibility to murine cerebral malaria by mediating T lymphocyte migration toward IFN-γ-induced chemokines. European Journal of Immunology 38, 10821095.
van Hensbroek, M. B., Palmer, A., Onyiorah, E., Schneider, G., Jaffar, S., Dolan, G., Memming, H., Frenkel, J., Enwere, G., Bennett, S., Kwiatkowski, D. and Greenwood, B. (1996). The effect of a monoclonal antibody to tumor necrosis factor on survival from childhood cerebral malaria. Journal of Infectious Diseases 174, 10911097.
Viebig, N. K., Wulbrand, U., Forster, R., Andrews, K. T., Lanzer, M. and Knolle, P. A. (2005). Direct activation of human endothelial cells by Plasmodium falciparum-infected erythrocytes. Infection and Immunity 73, 32713277. doi: 10.1128/iai.73.6.3271-3277.2005.
Villegas-Mendez, A., Greig, R., Shaw, T. N., de Souza, J. B., Gwyer Findlay, E., Stumhofer, J. S., Hafalla, J. C., Blount, D. G., Hunter, C. A., Riley, E. M. and Couper, K. N. (2012). IFN-γ-producing CD4+ T cells promote experimental cerebral malaria by modulating CD8+ T cell accumulation within the brain. Journal of Immunology 189, 968979. doi: 10.4049/jimmunol.1200688.
Weidanz, W. P., LaFleur, G., Brown, A., Burns, J. M. Jr., Gramaglia, I. and van der Heyde, H. C. (2010). γδ T cells but not NK cells are essential for cell-mediated immunity against Plasmodium chabaudi malaria. Infection and Immunity 78, 43314340. doi: 10.1128/iai.00539-10.
Weninger, W., Crowley, M. A., Manjunath, N. and von Andrian, U. H. (2001). Migratory properties of naive, effector, and memory CD8+ T cells. Journal of Experimental Medicine 194, 953966. doi: 10.1084/jem.194.7.953.
Were, T., Ouma, C., Otieno, R. O., Orago, A. S. S., Ong'echa, J. M., Vulule, J. M., Keller, C. C. and Perkins, D. J. (2006). Suppression of RANTES in children with Plasmodium falciparum malaria. Haematologica – the Hematology Journal 91, 13961399.
Were, T., Davenport, G. C., Yamo, E. O., Hittner, J. B., Awandare, G. A., Otieno, M. F., Ouma, C., Orago, A. S. S., Vulule, J. M., Ong'echa, J. M. and Perkins, D. J. (2009). Naturally acquired hemozoin by monocytes promotes suppression of RANTES in children with malarial anemia through an IL-10-dependent mechanism. Microbes and Infection 11, 811819. doi: 10.1016/j.micinf.2009.04.021.
White, N. J. and Ho, M. (1992). The pathophysiology of malaria. Advances in Parasitology 31, 83173.
Wilson, N. O., Jain, V., Roberts, C. E., Lucchi, N., Joel, P. K., Singh, M. P., Nagpal, A. C., Dash, A. P., Udhayakumar, V., Singh, N. and Stiles, J. K. (2011). CXCL4 and CXCL10 predict risk of fatal cerebral malaria. Disease Markers 30, 3949. doi: 10.3233/dma-2011-0763.
Wilson, N. O., Solomon, W., Anderson, L., Patrickson, J., Pitts, S., Bond, V., Liu, M. and Stiles, J. K. (2013). Pharmacologic inhibition of CXCL10 in combination with anti-malarial therapy eliminates mortality associated with murine model of cerebral malaria. PLoS ONE 8, e60898. doi: 10.1371/journal.pone.0060898.
Xie, H. J., Lim, Y. C., Luscinskas, F. W. and Lichtman, A. H. (1999). Acquisition of selectin binding and peripheral homing properties by CD4+ and CD8+ T cells. Journal of Experimental Medicine 189, 17651775. doi: 10.1084/jem.189.11.1765.
Yanez, D. M., Manning, D. D., Cooley, A. J., Weidanz, W. P. and van der Heyde, H. C. (1996). Participation of lymphocyte subpopulations in the pathogenesis of experimental murine cerebral malaria. Journal of Immunology 157, 16201624.
Yap, G. S. and Stevenson, M. M. (1994). Differential requirements for an intact spleen in induction and expression of B-cell-dependent immunity to Plasmodium chabaudi AS. Infection and Immunity 62, 42194225.
Yoshie, O., Imai, T. and Nomiyama, H. (1997). Novel lymphocyte-specific CC chemokines and their receptors. Journal of Leukocyte Biology 62, 634644.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed