Skip to main content Accessibility help

Plasmodium knowlesi: a superb in vivo nonhuman primate model of antigenic variation in malaria

  • M. R. GALINSKI (a1) (a2), S. A. LAPP (a1), M. S. PETERSON (a1), F. AY (a3), C. J. JOYNER (a1), K. G. LE ROCH (a4), L. L. FONSECA (a5), E. O. VOIT (a5) and THE MAHPIC CONSORTIUM (a6)...


Antigenic variation in malaria was discovered in Plasmodium knowlesi studies involving longitudinal infections of rhesus macaques (M. mulatta). The variant proteins, known as the P. knowlesi Schizont Infected Cell Agglutination (SICA) antigens and the P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) antigens, expressed by the SICAvar and var multigene families, respectively, have been studied for over 30 years. Expression of the SICA antigens in P. knowlesi requires a splenic component, and specific antibodies are necessary for variant antigen switch events in vivo. Outstanding questions revolve around the role of the spleen and the mechanisms by which the expression of these variant antigen families are regulated. Importantly, the longitudinal dynamics and molecular mechanisms that govern variant antigen expression can be studied with P. knowlesi infection of its mammalian and vector hosts. Synchronous infections can be initiated with established clones and studied at multi-omic levels, with the benefit of computational tools from systems biology that permit the integration of datasets and the design of explanatory, predictive mathematical models. Here we provide an historical account of this topic, while highlighting the potential for maximizing the use of P. knowlesi – macaque model systems and summarizing exciting new progress in this area of research.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Plasmodium knowlesi: a superb in vivo nonhuman primate model of antigenic variation in malaria
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Plasmodium knowlesi: a superb in vivo nonhuman primate model of antigenic variation in malaria
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Plasmodium knowlesi: a superb in vivo nonhuman primate model of antigenic variation in malaria
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Corresponding author: Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta GA, USA. E-mail:


Hide All
Agur, Z., Abiri, D. and Van Der Ploeg, L. H. (1989). Ordered appearance of antigenic variants of African trypanosomes explained in a mathematical model based on a stochastic switch process and immune-selection against putative switch intermediates. Proceedings of the National Academy of Sciences of the United States of America 86, 96269630.
Al-Khedery, B., Barnwell, J. W. and Galinski, M. R. (1999). Antigenic variation in malaria: a 3′ genomic alteration associated with the expression of a P. knowlesi variant antigen. Molecular Cell 3, 131141.
Alonso, P. L., Brown, G., Arevalo-Herrera, M., Binka, F., Chitnis, C., Collins, F., Doumbo, O. K., Greenwood, B., Hall, B. F., Levine, M. M., Mendis, K., Newman, R. D., Plowe, C. V., Rodriguez, M. H., Sinden, R., Slutsker, L. and Tanner, M. (2011). A research agenda to underpin malaria eradication. PLoS Medicine 8, e1000406.
Amit-Avraham, I., Pozner, G., Eshar, S., Fastman, Y., Kolevzon, N., Yavin, E. and Dzikowski, R. (2015). Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum . Proceedings of the National Academy of Sciences of the United States of America 112, E982E991.
Anderios, F., Noorrain, A. and Vythilingam, I. (2010). In vivo study of human Plasmodium knowlesi in Macaca fascicularis . Experimental Parasitology 124, 181189.
Antia, R., Nowak, M. A. and Anderson, R. M. (1996). Antigenic variation and the within-host dynamics of parasites. Proceedings of the National Academy of Sciences of the United States of America 93, 985989.
Arnot, D. E. and Jensen, A. T. (2011). Antigenic variation and the genetics and epigenetics of the PfEMP1 Erythrocyte Surface Antigens in Plasmodium falciparum Malaria. Advances in Applied Microbiology 74, 7796.
Aurrecoechea, C., Brestelli, J., Brunk, B. P., Dommer, J., Fischer, S., Gajria, B., Gao, X., Gingle, A., Grant, G., Harb, O. S., Heiges, M., Innamorato, F., Iodice, J., Kissinger, J. C., Kraemer, E., Li, W., Miller, J. A., Nayak, V., Pennington, C., Pinney, D. F., Roos, D. S., Ross, C., Stoeckert, C. J. Jr., Treatman, C. and Wang, H. (2009). PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Research 37, D539D543.
Ay, F., Bunnik, E. M., Varoquaux, N., Bol, S. M., Prudhomme, J., Vert, J. P., Noble, W. S. and Le Roch, K. G. (2014). Three-dimensional modeling of the P. falciparum genome during the erythrocytic cycle reveals a strong connection between genome architecture and gene expression. Genome Research 24, 974988.
Ay, F., Bunnik, E. M., Varoquaux, N., Vert, J. P., Noble, W. S. and Le Roch, K. G. (2015). Multiple dimensions of epigenetic gene regulation in the malaria parasite Plasmodium falciparum: gene regulation via histone modifications, nucleosome positioning and nuclear architecture in P. falciparum . Bioessays 37, 182194.
Bach, O., Baier, M., Pullwitt, A., Fosiko, N., Chagaluka, G., Kalima, M., Pfister, W., Straube, E. and Molyneux, M. (2005). Falciparum malaria after splenectomy: a prospective controlled study of 33 previously splenectomized Malawian adults. Transactions of the Royal Society of Tropical Medicine and Hygiene 99, 861867.
Bachmann, A., Esser, C., Petter, M., Predehl, S., Von Kalckreuth, V., Schmiedel, S., Bruchhaus, I. and Tannich, E. (2009). Absence of erythrocyte sequestration and lack of multicopy gene family expression in Plasmodium falciparum from a splenectomized malaria patient. PLoS ONE 4, e7459.
Bachmann, A., Predehl, S., May, J., Harder, S., Burchard, G. D., Gilberger, T. W., Tannich, E. and Bruchhaus, I. (2011). Highly co-ordinated var gene expression and switching in clinical Plasmodium falciparum isolates from non-immune malaria patients. Cell Microbiology 13, 13971409.
Bachmann, A., Petter, M., Krumkamp, R., Esen, M., Held, J., Scholz, J. A., Li, T., Sim, B. K., Hoffman, S. L., Kremsner, P. G., Mordmuller, B., Duffy, M. F. and Tannich, E. (2016). Mosquito passage dramatically changes var gene expression in controlled human plasmodium falciparum Infections. PLoS Pathogens 12, e1005538.
Barnwell, J., Howard, R., Coon, H. and Miller, L. (1983 a). Splenic requirement for antigenic variation and expression of the variant antigen on the erythrocyte membrane in cloned Plasmodium knowlesi malaria. Infection and Immunity 40, 985994.
Barnwell, J. W., Howard, R. J. and Miller, L. H. (1982). Altered expression of Plasmodium knowlesi variant antigen on the erythrocyte membrane in splenectomized rhesus monkeys. Journal of Immunology 128, 224226.
Barnwell, J. W., Howard, R. J. and Miller, L. H. (1983 b). Influence of the spleen on the expression of surface antigens on parasitized erythrocytes. Ciba Foundation Symposium 94, 117136.
Baruch, D. I., Pasloske, B. L., Singh, H. B., Bi, X., Ma, X. C., Feldman, M., Taraschi, T. F. and Howard, R. J. (1995). Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82, 7787.
Biggs, B. A., Anders, R. F., Dillon, H. E., Davern, K. M., Martin, M., Petersen, C. and Brown, G. V. (1992). Adherence of infected erythrocytes to venular endothelium selects for antigenic variants of Plasmodium falciparum . Journal of Immunology 149, 20472054.
Blyuss, K. B. and Gupta, S. (2009). Stability and bifurcations in a model of antigenic variation in malaria. Journal of Mathematical Biology 58, 923937.
Brolin, K. J., Ribacke, U., Nilsson, S., Ankarklev, J., Moll, K., Wahlgren, M. and Chen, Q. (2009). Simultaneous transcription of duplicated var2csa gene copies in individual Plasmodium falciparum parasites. Genome Biology 10, R117.
Brown, K. and Hills, L. (1974). Antigenic variation and immunity to Plasmodium knowlesi: antibodies which induce antigenic variation and antibodies which destroy parasites. Transactions of the Royal Society of Tropical Medicine and Hygiene 68, 139142.
Brown, K. N. (1973). Antibody induced variation in malaria parasites. Nature 242, 4950.
Brown, K. N. and Brown, I. N. (1965). Immunity to Malaria – Antigenic variation in chronic infections of Plasmodium Knowlesi . Nature 208, 12861288.
Buckee, C. O. and Recker, M. (2012). Evolution of the multi-domain structures of virulence genes in the human malaria parasite, Plasmodium falciparum . PLoS Computational Biology 8, e1002451.
Bull, P. C., Lowe, B. S., Kortok, M., Molyneux, C. S., Newbold, C. I. and Marsh, K. (1998). Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria. Nature Medicine 4, 358360.
Bunnik, E. M., Chung, D. W., Hamilton, M., Ponts, N., Saraf, A., Prudhomme, J., Florens, L. and Le Roch, K. G. (2013). Polysome profiling reveals translational control of gene expression in the human malaria parasite Plasmodium falciparum . Genome Biology 14, R128.
Carlton, J. M., Adams, J. H., Silva, J. C., Bidwell, S. L., Lorenzi, H., Caler, E., Crabtree, J., Angiuoli, S. V., Merino, E. F., Amedeo, P., Cheng, Q., Coulson, R. M., Crabb, B. S., Del Portillo, H. A., Essien, K., Feldblyum, T. V., Fernandez-Becerra, C., Gilson, P. R., Gueye, A. H., Guo, X., Kang'a, S., Kooij, T. W., Korsinczky, M., Meyer, E. V., Nene, V., Paulsen, I., White, O., Ralph, S. A., Ren, Q., Sargeant, T. J. et al. (2008). Comparative genomics of the neglected human malaria parasite Plasmodium vivax . Nature 455, 757763.
Chen, Q., Fernandez, V., Sundstrom, A., Schlichtherle, M., Datta, S., Hagblom, P. and Wahlgren, M. (1998). Developmental selection of var gene expression in Plasmodium falciparum . Nature 394, 392395.
Chien, J. T., Pakala, S. B., Geraldo, J. A., Lapp, S. A., Humphrey, J. C., Barnwell, J. W., Kissinger, J. C. and Galinski, M. R. (2016). High-quality genome assembly and annotation for Plasmodium coatneyi, generated using single-molecule real-time PacBio technology. Genome Announcements 4. doi: 10.1128/genomeA.00883-16.
Childs, L. M. and Buckee, C. O. (2015). Dissecting the determinants of malaria chronicity: why within-host models struggle to reproduce infection dynamics. Journal of Royal Society Interface 12, 20141379.
Chookajorn, T., Dzikowski, R., Frank, M., Li, F., Jiwani, A. Z., Hartl, D. L. and Deitsch, K. W. (2007). Epigenetic memory at malaria virulence genes. Proceedings of the National Academy of Sciences of the United States of America 104, 899902.
Corredor, V., Meyer, E. V., Lapp, S., Corredor-Medina, C., Huber, C. S., Evans, A. G., Barnwell, J. W. and Galinski, M. R. (2004). A SICAvar switching event in Plasmodium knowlesi is associated with the DNA rearrangement of conserved 3′ non-coding sequences. Molecular and Biochemical Parasitology 138, 3749.
Cortes, A. and Deitsch, K. W. (2017). Malaria epigenetics. Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a025528.
Cox-Singh, J. and Singh, B. (2008). Knowlesi malaria: newly emergent and of public health importance? Trends in Parasitology 24, 406410.
Cox-Singh, J., Davis, T. M. E., Lee, K. S., Shamsul, S. S. G., Matusop, A., Ratnam, S., Rahman, H. A., Conway, D. J. and Singh, B. (2008). Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clinical Infectious Diseases 46, 165171.
Daily, J. P., Le Roch, K. G., Sarr, O., Ndiaye, D., Lukens, A., Zhou, Y., Ndir, O., Mboup, S., Sultan, A., Winzeler, E. A. and Wirth, D. F. (2005). In vivo transcriptome of Plasmodium falciparum reveals overexpression of transcripts that encode surface proteins. Journal of Infectious Diseases 191, 11961203.
Daneshvar, C., Davis, T. M. E., Cox-Singh, J., Rafa'ee, M. Z., Zakaria, S. K., Divis, P. C. S. and Singh, B. (2009). Clinical and laboratory features of human Plasmodium knowlesi infection. Clinical Infectious Diseases 49, 852860.
Deitsch, K. W., Calderwood, M. S. and Wellems, T. E. (2001). Malaria. Cooperative silencing elements in var genes. Nature 412, 875876.
Divis, P. C., Singh, B., Anderios, F., Hisam, S., Matusop, A., Kocken, C. H., Assefa, S. A., Duffy, C. W. and Conway, D. J. (2015). Admixture in humans of two divergent Plasmodium knowlesi populations associated with different macaque host species. PLoS Pathogens 11, e1004888.
Duraisingh, M. T., Voss, T. S., Marty, A. J., Duffy, M. F., Good, R. T., Thompson, J. K., Freitas-Junior, L. H., Scherf, A., Crabb, B. S. and Cowman, A. F. (2005). Heterochromatin silencing and locus repositioning linked to regulation of virulence genes in Plasmodium falciparum . Cell 121, 1324.
Dzikowski, R. and Deitsch, K. W. (2008). Active transcription is required for maintenance of epigenetic memory in the malaria parasite Plasmodium falciparum . Journal of Molecular Biology 382, 288297.
Dzikowski, R., Li, F., Amulic, B., Eisberg, A., Frank, M., Patel, S., Wellems, T. E. and Deitsch, K. W. (2007). Mechanisms underlying mutually exclusive expression of virulence genes by malaria parasites. EMBO Reports 8, 959965.
Eaton, M. D. (1938). The agglutination of Plasmodium Knowlesi by immune serum. Journal of Experimental Medicine 67, 857870.
Fonseca, L. L., Alezi, H. S., Moreno, A., Barnwell, J. W., Galinski, M. R. and Voit, E. O. (2016). Quantifying the removal of red blood cells in Macaca mulatta during a Plasmodium coatneyi infection. Malaria Journal 15, 410.
Frank, M., Dzikowski, R., Amulic, B. and Deitsch, K. (2007). Variable switching rates of malaria virulence genes are associated with chromosomal position. Molecular Microbiology 64, 14861498.
Frech, C. and Chen, N. (2013). Variant surface antigens of malaria parasites: functional and evolutionary insights from comparative gene family classification and analysis. BMC Genomics 14, 427.
Freitas-Junior, L. H., Hernandez-Rivas, R., Ralph, S. A., Montiel-Condado, D., Ruvalcaba-Salazar, O. K., Rojas-Meza, A. P., Mancio-Silva, L., Leal-Silvestre, R. J., Gontijo, A. M., Shorte, S. and Scherf, A. (2005). Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites. Cell 121, 2536.
Galinski, M. R. and Barnwell, J. W. (2012). Chapter 5 – Nonhuman Primate Models for Human Malaria Research A2 – Abee, Christian R. In Nonhuman Primates in Biomedical Research, 2nd Edn. (ed. Mansfield, K., Tardif, S. and Morris, T.), pp. 299323. Academic Press, Boston.
Galinski, M. R. and Corredor, V. (2004). Variant antigen expression in malaria infections: posttranscriptional gene silencing, virulence and severe pathology. Molecular Biochemistry Parasitology 134, 1725.
Gardner, M. J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R. W., Carlton, J. M., Pain, A., Nelson, K. E., Bowman, S., Paulsen, I. T., James, K., Eisen, J. A., Rutherford, K., Salzberg, S. L., Craig, A., Kyes, S., Chan, M. S., Nene, V., Shallom, S. J., Suh, B., Peterson, J., Angiuoli, S., Pertea, M., Allen, J., Selengut, J., Haft, D., Mather, M. W., Vaidya, A. B., Martin, D. M. et al. (2002). Genome sequence of the human malaria parasite Plasmodium falciparum . Nature 419, 498511.
Goldwyn, J. H., Imennov, N. S., Famulare, M. and Shea-Brown, E. (2011). Stochastic differential equation models for ion channel noise in Hodgkin-Huxley neurons. Physical Review E 83, 041908.
Guizetti, J. and Scherf, A. (2013). Silence, activate, poise and switch! Mechanisms of antigenic variation in Plasmodium falciparum . Cell Microbiology 15, 718726.
Handunnetti, S. M., Mendis, K. N. and David, P. H. (1987). Antigenic variation of cloned Plasmodium fragile in its natural host Macaca sinica. Sequential appearance of successive variant antigenic types. Journal of Experimental Medicine 165, 12691283.
Ho, M., Bannister, L. H., Looareesuwan, S. and Suntharasamai, P. (1992). Cytoadherence and ultrastructure of Plasmodium falciparum-infected erythrocytes from a splenectomized patient. Infection and Immunity 60, 22252228.
Hommel, M., David, P. H. and Oligino, L. D. (1983). Surface alterations of erythrocytes in Plasmodium falciparum malaria. Antigenic variation, antigenic diversity, and the role of the spleen. Journal of Experimental Medicine 157, 11371148.
Howard, R. J. (1984). Antigenic variation of bloodstage malaria parasites. Philosophical Transactions of Royal Society of London B Biological Sciences 307, 141158.
Howard, R. J. and Barnwell, J. W. (1984 a). The detergent solubility properties of a malarial (Plasmodium knowlesi) variant antigen expressed on the surface of infected erythrocytes. Journal of Cell Biochemistry 24, 297306.
Howard, R. J. and Barnwell, J. W. (1984 b). Roles of surface antigens on malaria-infected red blood cells in evasion of immunity. Contemporary Topocs in Immunobiology 12, 127200.
Howard, R. J. and Barnwell, J. W. (1984 c). Solubilization and immunoprecipitation of 125I-labelled antigens from Plasmodium knowlesi schizont-infected erythrocytes using non-ionic, anionic and zwitterionic detergents. Parasitology 88 (Pt 1), 2736.
Howard, R. J. and Barnwell, J. W. (1985). Immunochemical analysis of surface membrane antigens on erythrocytes infected with non-cloned SICA[+] or cloned SICA[−] Plasmodium knowlesi . Parasitology 91 (Pt 2), 245261.
Howard, R. J., Barnwell, J. W. and Kao, V. (1983). Antigenic variation in Plasmodium knowlesi Malaria – identification of the variant antigen on infected erythrocytes. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences 80, 41294133.
Howard, R. J., Kao, V. and Barnwell, J. W. (1984). Protein antigens of Plasmodium knowlesi clones of different variant antigen phenotype. Parasitology 88(Pt 2), 221237.
Israeli, A., Shapiro, M. and Ephros, M. A. (1987). Plasmodium falciparum malaria in an asplenic man. Transactions of Royal Society of Tropical Medicine and Hygiene 81, 233234.
Jiang, L., Mu, J., Zhang, Q., Ni, T., Srinivasan, P., Rayavara, K., Yang, W., Turner, L., Lavstsen, T., Theander, T. G., Peng, W., Wei, G., Jing, Q., Wakabayashi, Y., Bansal, A., Luo, Y., Ribeiro, J. M., Scherf, A., Aravind, L., Zhu, J., Zhao, K. and Miller, L. H. (2013). PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum . Nature 499, 223227.
Joergensen, L., Bengtsson, D. C., Bengtsson, A., Ronander, E., Berger, S. S., Turner, L., Dalgaard, M. B., Cham, G. K., Victor, M. E., Lavstsen, T., Theander, T. G., Arnot, D. E. and Jensen, A. T. (2010). Surface co-expression of two different PfEMP1 antigens on single Plasmodium falciparum-infected erythrocytes facilitates binding to ICAM1 and PECAM1. PLoS Pathogens 6, e1001083.
Johnson, P. L., Kochin, B. F., Ahmed, R. and Antia, R. (2012). How do antigenically varying pathogens avoid cross-reactive responses to invariant antigens? Proceedings Biological Sciences 279, 27772785.
Joyner, C., Moreno, A., Meyer, E. V., Cabrera-Mora, M., Ma, H. C., Kissinger, J. C., Barnwell, J. W. and Galinski, M. R. (2016). Plasmodium cynomolgi infections in rhesus macaques display clinical and parasitological features pertinent to modelling vivax malaria pathology and relapse infections. Malaria Journal 15, 451.
Kaplan, N. and Dekker, J. (2013). High-throughput genome scaffolding from in vivo DNA interaction frequency. Nature Biotechnology 31, 11431147.
Knowles, R. and Das Gupta, B. (1932). A study of monkey-malaria and its experimental transmission to man. Indian Medical Gazette 67, 301320.
Kocken, C. H., Ozwara, H., Van Der Wel, A., Beetsma, A. L., Mwenda, J. M. and Thomas, A. W. (2002). Plasmodium knowlesi provides a rapid in vitro and in vivo transfection system that enables double-crossover gene knockout studies. Infection and Immunity 70, 655660.
Kocken, C. H., Zeeman, A. M., Voorberg-Van Der Wel, A. and Thomas, A. W. (2009). Transgenic Plasmodium knowlesi: relieving a bottleneck in malaria research? Trends in Parasitology 25, 370374.
Korir, C. C. and Galinski, M. R. (2006). Proteomic studies of Plasmodium knowlesi SICA variant antigens demonstrate their relationship with P. falciparum EMP1. Infection Genetics and Evolution 6, 7579.
Lapp, S. A., Korir, C. C. and Galinski, M. R. (2009). Redefining the expressed prototype SICAvar gene involved in Plasmodium knowlesi antigenic variation. Malaria Journal 8, 181.
Lapp, S. A., Korir-Morrison, C., Jiang, J., Bai, Y., Corredor, V. and Galinski, M. R. (2013). Spleen-dependent regulation of antigenic variation in malaria parasites: Plasmodium knowlesi SICAvar expression profiles in splenic and asplenic hosts. PLoS ONE 8, e78014.
Lapp, S. A., Mok, S., Zhu, L., Wu, H., Preiser, P. R., Bozdech, Z. and Galinski, M. R. (2015). Plasmodium knowlesi gene expression differs in ex vivo compared to in vitro blood-stage cultures. Malaria Journal 14, 110.
Lapp, S. A., Geraldo, J. A., Chien, J. T., Ay, F., Pakala, S. B., Batugedara, G., Humphrey, J., The MaHPIC Consortium, Debarry, J. D., Le Roche, K. G., Galinski, M. R. and Kissinger, J. C. (2017). PacBio assembly of a Plasmodium knowlesi genome sequence with Hi-C correction and manual annotatin of the SICAvar gene family. Parasitology.
Lavstsen, T., Magistrado, P., Hermsen, C. C., Salanti, A., Jensen, A. T., Sauerwein, R., Hviid, L., Theander, T. G. and Staalsoe, T. (2005). Expression of Plasmodium falciparum erythrocyte membrane protein 1 in experimentally infected humans. Malaria Journal 4, 21.
Leech, J. H., Barnwell, J. W., Aikawa, M., Miller, L. H. and Howard, R. J. (1984). Plasmodium falciparum malaria: association of knobs on the surface of infected erythrocytes with a histidine-rich protein and the erythrocyte skeleton. Journal of Cell Biology 98, 12561264.
Lemieux, J. E., Kyes, S. A., Otto, T. D., Feller, A. I., Eastman, R. T., Pinches, R. A., Berriman, M., Su, X. Z. and Newbold, C. I. (2013). Genome-wide profiling of chromosome interactions in Plasmodium falciparum characterizes nuclear architecture and reconfigurations associated with antigenic variation. Molecular Microbiology 90, 519537.
Lieberman-Aiden, E., Van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., Sandstrom, R., Bernstein, B., Bender, M. A., Groudine, M., Gnirke, A., Stamatoyannopoulos, J., Mirny, L. A., Lander, E. S. and Dekker, J. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289293.
Lipsitch, M. and O'hagan, J. J. (2007). Patterns of antigenic diversity and the mechanisms that maintain them. Journal of Royal Society Interface 4, 787802.
Lopez-Rubio, J. J., Riviere, L. and Scherf, A. (2007). Shared epigenetic mechanisms control virulence factors in protozoan parasites. Current Opinion in Microbiology 10, 560568.
Lopez-Rubio, J. J., Mancio-Silva, L. and Scherf, A. (2009). Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. Cell Host & Microbe 5, 179190.
Maeno, Y., Quang, N. T., Culleton, R., Kawai, S., Masuda, G., Nakazawa, S. and Marchand, R. P. (2015). Humans frequently exposed to a range of non-human primate malaria parasite species through the bites of Anopheles dirus mosquitoes in South-central Vietnam. Parasites & Vectors 8, 376.
Marchand, R. P., Culleton, R., Maeno, Y., Quang, N. T. and Nakazawa, S. (2011). Co-infections of Plasmodium knowlesi, P. falciparum, and P. vivax among Humans and Anopheles dirus Mosquitoes, Southern Vietnam. Emerging Infectious Diseases 17, 12321239.
Miller, L. H., Fremount, H. N. and Luse, S. A. (1971). Deep vascular schizogony of Plasmodium knowlesi in Macaca mulatta. Distribution in organs and ultrastructure of parasitized red cells. American Journal of Tropical Medicine and Hygiene 20, 816824.
Miller, L. H., Baruch, D. I., Marsh, K. and Doumbo, O. K. (2002). The pathogenic basis of malaria. Nature 415, 673679.
Moon, R. W., Sharaf, H., Hastings, C. H., Ho, Y. S., Nair, M. B., Rchiad, Z., Knuepfer, E., Ramaprasad, A., Mohring, F., Amir, A., Yusuf, N. A., Hall, J., Almond, N., Lau, Y. L., Pain, A., Blackman, M. J. and Holder, A. A. (2016). Normocyte-binding protein required for human erythrocyte invasion by the zoonotic malaria parasite Plasmodium knowlesi . Proceedings of the National Academy of Sciences of the United States of America 113, 72317236.
Nakazawa, S., Marchand, R. P., Quang, N. T., Culleton, R., Manh, N. D. and Maeno, Y. (2009). Anopheles dirus co-infection with human and monkey malaria parasites in Vietnam. International Journal of Parasitology 39, 15331537.
Noble, R. and Recker, M. (2012). A statistically rigorous method for determining antigenic switching networks. PLoS ONE 7, e39335.
Noble, R., Christodoulou, Z., Kyes, S., Pinches, R., Newbold, C. I. and Recker, M. (2013). The antigenic switching network of Plasmodium falciparum and its implications for the immuno-epidemiology of malaria. Elife 2, e01074.
Nowak, M. A. and May, R. M. (1991). Mathematical biology of HIV infections: antigenic variation and diversity threshold. Mathematical Biosciences 106, 121.
Onditi, F. I., Nyamongo, O. W., Omwandho, C. O., Maina, N. W., Maloba, F., Farah, I. O., King, C. L., Moore, J. M. and Ozwara, H. S. (2015). Parasite accumulation in placenta of non-immune baboons during Plasmodium knowlesi infection. Malaria Journal 14, 118.
Ozwara, H., Langermans, J. A., Maamun, J., Farah, I. O., Yole, D. S., Mwenda, J. M., Weiler, H. and Thomas, A. W. (2003). Experimental infection of the olive baboon (Paplio anubis) with Plasmodium knowlesi: severe disease accompanied by cerebral involvement. American Journal of Tropical Medicine and Hygiene 69, 188194.
Pain, A., Bohme, U., Berry, A. E., Mungall, K., Finn, R. D., Jackson, A. P., Mourier, T., Mistry, J., Pasini, E. M., Aslett, M. A., Balasubrammaniam, S., Borgwardt, K., Brooks, K., Carret, C., Carver, T. J., Cherevach, I., Chillingworth, T., Clark, T. G., Galinski, M. R., Hall, N., Harper, D., Harris, D., Hauser, H., Ivens, A., Janssen, C. S., Keane, T., Larke, N., Lapp, S., Marti, M., Moule, S. et al. (2008). The genome of the simian and human malaria parasite Plasmodium knowlesi . Nature 455, 799803.
Pasini, E. M., Zeeman, A. M., Voorberg, V. A. N. D. E. R. W. A. and Kocken, C. H. (2016). Plasmodium knowlesi: a relevant, versatile experimental malaria model. Parasitology, 115. doi: 10.1017/S0031182016002286.
Recker, M., Nee, S., Bull, P. C., Kinyanjui, S., Marsh, K., Newbold, C. and Gupta, S. (2004). Transient cross-reactive immune responses can orchestrate antigenic variation in malaria. Nature 429, 555558.
Recker, M., Buckee, C. O., Serazin, A., Kyes, S., Pinches, R., Christodoulou, Z., Springer, A. L., Gupta, S. and Newbold, C. I. (2011). Antigenic variation in Plasmodium falciparum malaria involves a highly structured switching pattern. PLoS Pathogens 7, e1001306.
Rinn, J. L. and Chang, H. Y. (2012). Genome regulation by long noncoding RNAs. Annual Review of Biochemistry 81, 145166.
Rivkin, A., Ben-Hur, S. and Regev-Rudzki, N. (2017). Malaria parasites distribute subversive messages across enemy lines. Trends in Parasitology 33, 24.
Roberts, D. J., Craig, A. G., Berendt, A. R., Pinches, R., Nash, G., Marsh, K. and Newbold, C. I. (1992). Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature 357, 689692.
Ross, S. M. (2006). Introduction to Probability Models, 9th Edn, Academic Press, Inc.
Rutledge, G. G., Bohme, U., Sanders, M., Reid, A. J., Cotton, J. A., Maiga-Ascofare, O., Djimde, A. A., Apinjoh, T. O., Amenga-Etego, L., Manske, M., Barnwell, J. W., Renaud, F., Ollomo, B., Prugnolle, F., Anstey, N. M., Auburn, S., Price, R. N., Mccarthy, J. S., Kwiatkowski, D. P., Newbold, C. I., Berriman, M. and Otto, T. D. (2017). Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution. Nature 542, 101104.
Scherf, A., Hernandez-Rivas, R., Buffet, P., Bottius, E., Benatar, C., Pouvelle, B., Gysin, J. and Lanzer, M. (1998). Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum . EMBO Journal 17, 54185426.
Severins, M., Klinkenberg, D. and Heesterbeek, H. (2012). How selection forces dictate the variant surface antigens used by malaria parasites. Journal of the Royal Society Interface 9, 246260.
Singh, B., Kim Sung, L., Matusop, A., Radhakrishnan, A., Shamsul, S. S., Cox-Singh, J., Thomas, A. and Conway, D. J. (2004). A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 363, 10171024.
Smith, J. D., Chitnis, C. E., Craig, A. G., Roberts, D. J., Hudson-Taylor, D. E., Peterson, D. S., Pinches, R., Newbold, C. I. and Miller, L. H. (1995). Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82, 101110.
Smith, J. D., Subramanian, G., Gamain, B., Baruch, D. I. and Miller, L. H. (2000). Classification of adhesive domains in the Plasmodium falciparum erythrocyte membrane protein 1 family. Molecular and Biochemical Parasitology 110, 293310.
Spence, P. J., Jarra, W., Levy, P., Reid, A. J., Chappell, L., Brugat, T., Sanders, M., Berriman, M. and Langhorne, J. (2013). Vector transmission regulates immune control of Plasmodium virulence. Nature 498, 228231.
Stumpf, P. S., Smith, R. C. G., Lenz, M., Schuppert, A., Müller, F.-J., Babtie, A., Chan, T. E., Stumpf, M. P. H., Please, C. P., Howison, S. D., Arai, F. and Macarthur, B. D. (2017). Stem cell differentiation is a stochastic process with memory. bioRxiv doi: 10.1101/101048.
Su, X. Z., Heatwole, V. M., Wertheimer, S. P., Guinet, F., Herrfeldt, J. A., Peterson, D. S., Ravetch, J. A. and Wellems, T. E. (1995). The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82, 89100.
Van De Werken, H. J., Landan, G., Holwerda, S. J., Hoichman, M., Klous, P., Chachik, R., Splinter, E., Valdes-Quezada, C., Oz, Y., Bouwman, B. A., Verstegen, M. J., De Wit, E., Tanay, A. and De Laat, W. (2012). Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nature Methods 9, 969972.
Van Der Wel, A. M., Tomas, A. M., Kocken, C. H., Malhotra, P., Janse, C. J., Waters, A. P. and Thomas, A. W. (1997). Transfection of the primate malaria parasite Plasmodium knowlesi using entirely heterologous constructs. Journal of Experimental Medicine 185, 14991503.
Vargas-Serrato, E., Corredor, V. and Galinski, M. R. (2003). Phylogenetic analysis of CSP and MSP-9 gene sequences demonstrates the close relationship of Plasmodium coatneyi to Plasmodium knowlesi . Infection Genetics and Evolution 3, 6773.
Vembar, S. S., Droll, D. and Scherf, A. (2016). Translational regulation in blood stages of the malaria parasite Plasmodium spp.: systems-wide studies pave the way. Wiley Interdisciplinary Reviews RNA 7, 772792.
Volz, J. C., Bartfai, R., Petter, M., Langer, C., Josling, G. A., Tsuboi, T., Schwach, F., Baum, J., Rayner, J. C., Stunnenberg, H. G., Duffy, M. F. and Cowman, A. F. (2012). PfSET10, a Plasmodium falciparum methyltransferase, maintains the active var gene in a poised state during parasite division. Cell Host & Microbe 11, 718.
Wang, C. W., Hermsen, C. C., Sauerwein, R. W., Arnot, D. E., Theander, T. G. and Lavstsen, T. (2009). The Plasmodium falciparum var gene transcription strategy at the onset of blood stage infection in a human volunteer. Parasitology International 58, 478480.
Warimwe, G. M., Recker, M., Kiragu, E. W., Buckee, C. O., Wambua, J., Musyoki, J. N., Marsh, K. and Bull, P. C. (2013). Plasmodium falciparum var gene expression homogeneity as a marker of the host-parasite relationship under different levels of naturally acquired immunity to malaria. PLoS ONE 8, e70467.
Wellems, T. E., Hayton, K. and Fairhurst, R. M. (2009). The impact of malaria parasitism: from corpuscles to communities. Journal of Clinical Investigation 119, 24962505.
Zhabin, D. N. (2004). Stochastic processes with short memory. ARXIV arXiv:math/0401144v0401141.
Zhou, Z., Mitchell, R. M., Kariuki, S., Odero, C., Otieno, P., Otieno, K., Onyona, P., Were, V., Wiegand, R. E., Gimnig, J. E., Walker, E. D., Desai, M. and Shi, Y. P. (2016). Assessment of submicroscopic infections and gametocyte carriage of Plasmodium falciparum during peak malaria transmission season in a community-based cross-sectional survey in western Kenya, 2012. Malaria Journal 15, 421.
Zimin, A. V., Cornish, A. S., Maudhoo, M. D., Gibbs, R. M., Zhang, X., Pandey, S., Meehan, D. T., Wipfler, K., Bosinger, S. E., Johnson, Z. P., Tharp, G. K., Marcais, G., Roberts, M., Ferguson, B., Fox, H. S., Treangen, T., Salzberg, S. L., Yorke, J. A. and Norgren, R. B. Jr. (2014). A new rhesus macaque assembly and annotation for next-generation sequencing analyses. Biology Direct 9, 20.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed