Skip to main content Accessibility help
×
Home

A model for the dynamics of a protozoan parasite within and between successive host populations

  • D. Klinkenberg (a1) and J. A. P. Heesterbeek (a1)

Summary

Parasite-host systems often include an obligatory environmental stage in the parasite life-cycle, which can be transmitted between successive populations. Complexity even increases if immunity only gradually develops upon re-infection. For a better understanding of such systems we study Eimeria spp. in chickens, a protozoan parasite transmitted through oocysts on the floor. This paper deals with dynamics within and between successive cohorts of chickens by coupling a within-host description of the parasite life-cycle (with immunity) to re-uptake of oocysts from the environment. First the initial environmental oocyst level is related to the maximum infection load within a cohort, as a measure of production damage, from which we conclude that minimum damage levels can be observed with intermediate oocyst levels. Then we relate the initial to the final oocyst level of a cohort, and study the dynamics between cohorts in relation to an oocyst cleaning efficiency after each cohort. The resulting unstable dynamics lead to the conclusion that it will often be impossible to minimize damage by repeatedly cleaning with the same effort: it may be necessary to artificially increase oocyst levels in the shed before each chicken cohort.

Copyright

Corresponding author

*Corresponding author. Tel: +31 30 2531233. Fax: +31 30 2521887. E-mail: d.klinkenberg@vet.uu.nl

References

Hide All
Allen, P. C. and Fetterer, R. H. (2002). Recent advances in biology and immunobiology of Eimeria species and in diagnosis and control of infection with these coccidian parasites of poultry. Clinical Microbiology Reviews 15, 5865.
Anderson, R. M. (1998). Complex dynamical behaviours in the interaction between parasite populations and the host's immune system. International Journal for Parasitology 28, 551566.
Andreasen, V. and Frommelt, T. (2005). A school-oriented, age-structured epidemic model. SIAM Journal of Applied Mathematics 65, 18701887.
Dugaw, C. J., Hastings, A., Preisser, E. L. and Strong, D. R. (2004). Seasonally limited host supply generates microparasite population cycles. Bulletin of Mathematical Biology 66, 583594.
Edelstein-Keshet, L. (1988). Mathematical Models in Biology. McGraw-Hill, Inc., New York.
Graat, E. A. M., Henken, A. M., Ploeger, H. W., Noordhuizen, J. P. T. M. and Vertommen, M. H. (1994). Rate and course of sporulation of oocysts of Eimeria acervulina under different environmental conditions. Parasitology 108, 497502.
Graat, E. A. M., Ploeger, H. W., Henken, A. M., De Vries Reilingh, G., Noordhuizen, J. P. T. M. and Van Beek, P. N. G. M. (1996). Effects of initial litter contamination level with Eimeria acervulina on population dynamics and production characteristics in broilers. Veterinary Parasitology 65, 223232.
Henken, A. M., Graat, E. A. M., Ploeger, H. W. and Carpenter, T. E. (1994). Description of a model to simulate effects of Eimeria acervulina infection on broiler production. Parasitology 108, 513518.
Ives, A. R., Gross, K. and Jansen, V. A. A. (2000). Periodic mortality events in predator-prey systems. Ecology 81, 33303340.
Klinkenberg, D. and Heesterbeek, J. A. P. (2005). A simple model for the within-host dynamics of a protozoan parasite. Proceedings of the Royal Society of London, B 272, 593600.
Lillehoj, H. S. and Lillehoj, E. P. (2000). Avian coccidiosis. A review of acquired intestinal immunity and vaccination strategies. Avian Diseases 44, 408425.
Long, P. L. and Rowell, J. G. (1975). Sampling broiler house litter for coccidial oocysts. British Poultry Science 16, 583592.
McDougald, L. R. (2003). Protozoal infections. In Diseases of Poultry (ed. Saif, Y. M.), pp. 9731023. Iowa State Press, Ames, Iowa, USA.
Mollison, D. (1991). Dependence of epidemic and population velocities on basic parameters. Mathematical Biosciences 107, 255287.
Parry, S., Barratt, M. E. J., Jones, S., McKee, S. and Murray, J. D. (1992). Modelling coccidial infection in chickens: emphasis on vaccination by in-feed delivery of oocysts. Journal of Theoretical Biology 157, 407425.
Reyna, P. S., McDougald, L. R. and Mathis, G. F. (1982). Survival of coccidia in poultry litter and reservoirs of infection. Avian Diseases 27, 464473.
Roberts, M. G. and Heesterbeek, J. A. P. (1998). A simple parasite model with complicated dynamics. Journal of Mathematical Biology 37, 272290.
Roberts, M. G., Smith, G. and Grenfell, B. T. (1995). Mathematical model for macroparasites of wildlife. In Ecology of Infectious Diseases in Natural Populations (ed. Grenfell, B. T. and Dobson, A. P.), pp. 177208. Cambridge University Press, Cambridge, UK.
Waldenstedt, L., Elwinger, K., Lundén, A., Thebo, P. and Uggla, A. (2001). Sporulation of Eimeria maxima oocysts in litter with different moisture contents. Poultry Science 80, 14121415.
Williams, R. B. (2001). Quantification of the crowding effect during infections with the seven Eimeria species of the domesticated fowl: its importance for experimental designs and the production of oocyst stocks. International Journal for Parasitology 31, 10561069.
Williams, R. B., Johnson, J. D. and Andrews, S. J. (2000). Anticoccidial vaccination of broiler chickens in various management programmes: relationship between oocyst accumulation in litter and the development of protective immunity. Veterinary Research Communications 24, 309325.
Yun, C. H., Lillehoj, H. S. and Lillehoj, E. P. (2000). Intestinal immune response to coccidiosis. Developmental and Comparative Immunology 24, 303324.

Keywords

Related content

Powered by UNSILO
Type Description Title
PDF
Supplementary materials

Klinkenberg Supplementary Material
Klinkenberg Supplementary Material.pdf

 PDF (76 KB)
76 KB

A model for the dynamics of a protozoan parasite within and between successive host populations

  • D. Klinkenberg (a1) and J. A. P. Heesterbeek (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.