Skip to main content Accessibility help
×
Home

Leishmania (Viannia) braziliensis: insights on subcellular distribution and biochemical properties of heparin-binding proteins

  • LUZIA MONTEIRO DE CASTRO CÔRTES (a1), MIRIAN CLAUDIA DE SOUZA PEREIRA (a2), FRANCISCO ODÊNCIO RODRIGUES DE OLIVEIRA (a1) (a2), SUZANA CORTE-REAL (a3), FRANKLIN SOUZA DA SILVA (a1), BERNARDO ACÁCIO SANTINI PEREIRA (a1), MARIA DE FÁTIMA MADEIRA (a4), MARCIA TEREZINHA BARONI DE MORAES (a5), REGINALDO PEÇANHA BRAZIL (a6) and CARLOS ROBERTO ALVES (a1)...

Summary

Leishmaniasis is a vector-borne disease and an important public health issue. Glycosaminoglycan ligands in Leishmania parasites are potential targets for new strategies to control this disease. We report the subcellular distribution of heparin-binding proteins (HBPs) in Leishmania (Viannia) braziliensis and specific biochemical characteristics of L. (V.) braziliensis HBPs. Promastigotes were fractionated, and flagella and membrane samples were applied to HiTrap Heparin affinity chromatography columns. Heparin-bound fractions from flagella and membrane samples were designated HBP Ff and HBP Mf, respectively. Fraction HBP Ff presented a higher concentration of HBPs relative to HBP Mf, and SDS-PAGE analyses showed 2 major protein bands in both fractions (65 and 55 kDa). The 65 kDa band showed gelatinolytic activity and was sensitive to inhibition by 1,10-phenanthroline. The localization of HBPs on the promastigote surfaces was confirmed using surface plasmon resonance (SPR) biosensor analysis by binding the parasites to a heparin-coated sensor chip; that was inhibited in a dose-dependent manner by pre-incubating the parasites with variable concentrations of heparin, thus indicating distinct heparin-binding capacities for the two fractions. In conclusion, protein fractions isolated from either the flagella or membranes of L. (V.) braziliensis promastigotes have characteristics of metallo-proteinases and are able to bind to glycosaminoglycans.

Copyright

Corresponding author

*Corresponding author: LABIMDOE, IOC, Fiocruz. Av. Brasil 4365, CP 926, 21040-360, Manguinhos, Rio de Janeiro, RJ, Brazil. E-mail: calves@ioc.fiocruz.br

References

Hide All
Alves, C. R., Marzochi, M. C. and Giovanni-de-Simone, S. (1993). Heterogeneity of cysteine proteinases in Leishmania braziliensis and Leishmania major. Brazilian Journal of Medical and Biological Research 26, 167171.
Alves, J. L., Mendonca-Lima, F. W. and Alves, C. R. (2004). The use of metal chelate affinity chromatography on the isolation of Leishmania chagasi promastigote hydrophobic proteinases. Veterinary Parasitology 30, 137145.
Azevedo-Pereira, R. L., Pereira, M. C. S., Oliveira, F. O. R. Jr., Brazil, R. P., Côrtes, L. M. C., Madeira, M. F., Santos, A. L. S., Toma, L. and Alves, C. R. (2007). Heparin binding proteins from Leishmania (Viannia) braziliensis promastigotes. Veterinary Parasitology 145, 234239.
Bates, P. A. and Rogers, M. E. (2004). New insights into the developmental biology and transmission mechanisms of Leishmania. Current Molecular Medicine 4, 601609.
Becker, I., Salaiza, N., Aguirre, M., Delgado, J., Carrillo-Carrasco, N., Kobeh, L. G., Ruiz, A., Cervantes, R., Torres, A. P., Cabrera, N., González, A., Maldonado, C. and Isibasi, A. (2003). Leishmania lipophosphoglycan (LPG) activates NK cells through toll-like receptor-2. Molecular and Biochemical Parasitology 130, 6574.
Bergwerff, A. A. and van Knapen, F. (2006). Surface plasmon resonance biosensors for detection of pathogenic microorganisms: strategies to secure food and environmental safety. Journal of AOAC International 89, 826831.
Brandonisio, O., Spinelli, R. and Pepe, M. (2004). Dendritic cells in Leishmania infection. Microbes and infection 6, 14021409.
Brittingham, A., Morrison, C. J., McMaster, W. R., McGwire, B. S., Chang, K. P. and Mosser, D. M. (1995). Role of the Leishmania surface protease gp63 in complement fixation, cell adhesion, and resistance to complement-mediated lysis. The Journal of Immunology 155, 31023111.
Butcher, B. A., Sklar, L. A., Seamer, L. C. and Glew, R. H. (1992). Heparin enhances the interaction of infective Leishmania donovani promastigotes with mouse peritoneal macrophages. A fluorescence flow cytometric analysis. Journal of Immunology 148, 28792886.
Cassaro, C. M. and Dietrich, C. P. (1977). Distribution of sulfated mucopolysaccharides in invertebrates. The Journal of Biological Chemistry 252, 22542261.
Chava, A. K., Bandyopadhyay, S., Chatterjee, M. and Mandal, C. (2004). Sialoglycans in protozoal diseases: their detection, modes of acquisition and emerging biological roles. Glycoconjugate Journal 20, 199206.
Cuervo, P., Saboia-Vahia, L., Costa Silva-Filho, F., Fernandes, O., Cupolillo, E. and dE Jesus, J. B. (2006). A zymographic study of metalloprotease activities in extracts and extracellular secretions of Leishmania (Viannia) braziliensis strains. Parasitology 132, 177185.
Dam, T. K., Bandyopadhyay, P., Sarkar, M., Ghosal, J., Bhattacharya, A. and Choudhury, A. (1994). Purification and partial characterization of a heparin-binding lectin from the marine clam Anadara granosa. Biochemical and Biophysical Research Communication 203, 3645.
de Souza, W. and da Cunha-e- Silva, N. L. (2003). Cell fractionation of parasitic protozoa – a review. Memórias do Instituto Oswaldo Cruz 98, 151170.
Descoteaux, A. and Turco, S. J. (1999). Glycoconjugates in Leishmania infectivity. Biochemistry and Biophysical Acta 1455, 341352.
Dietrich, C. P., Sampaio, L. O., Montes, D. E., OCA, H. and Nader, H. B. (1980). Role of sulfated mucopolysaccharides in cell recognition and neoplastic transformation. Anais da Academia Brasileira de Ciências 52, 179186.
Dreyfuss, J. L., Regatieri, C. V., Jarrouge, T. R., Cavalheiro, R. P., Sampaio, L. O. and Nader, H. B. (2009). Heparan sulfate proteoglycans: structure, protein interactions and cell signaling. Anais da Academia Brasileira de Ciências 81, 409429.
Heussen, C. and Dowdle, E. B. (1980). Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copalymerized substrates. Analytical Biochemistry 102, 196202.
Hide, M., Tsutsui, T., Sato, H., Nishimura, T., Morimoto, K., Yamnoto, S. and Yoshizato, K. (2002). Real-time analysis of ligand-induced cell surface and intracellular reactions of living mast cells using a surface-plasmon resonance-based biosensor. Analytical Biochemistry 302, 2837.
Kahl, L. P. and McMahon-Pratt, D. (1987). Structural and antigenic characterization of a species- and promastigote-specific Leishmania mexicana amazonensis membrane protein. The Journal of Immunology 138, 15871595.
Kamhawi, S. (2006). Phlebotomine sand flies and Leishmania parasites: friends or foes? Trends in Parasitology 22, 439–345.
Kock, N. P., Gabius, H. J., Schmitz, J. and Schotteliu, J. (1997). Receptors for carbohydrate ligands including heparin on the cell surface of Leishmania and other trypanosomatids. Tropical Medicine and International Health 2, 863874.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680685.
Lainson, R. and Shaw, J. J. (1987). Evolution, classification and geographical distribution. In The Leishmaniases in Biology and Medicine (ed. Peters, W. and Killick-Kendrick, E.), pp. 1120. Academic Press, London, UK.
Lodge, R. and Descoteaux, A. (2008). Leishmania invasion and phagosome biogenesis. Subcellular Biochemistry 47, 174181.
Love, D. C., Esko, J. D. and Mosser, D. M. (1993). A heparin-binding activity on Leishmania amastigotes which mediates adhesion to cellular proteoglycans. The Journal of Cell Biology 123, 759766.
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265275.
McConville, M. J., Homans, S. W., Thomas-Oates, J. E., Dell, A. and Bacic, A. (1990). Structures of the glycoinositolphospholipids from Leishmania major. A family of novel galactofuranose-containing glycolipids. Journal of Biological Chemistry 265, 73857394.
Moody, S. F. (1993). Molecular variation in Leishmania. Acta Tropica 53, 185204.
Morgado-Diaz, J. A., Silva-Lopez, R. E., Alves, C. R., Soares, M. J., Corte-Real, S. and Giovanni-De-Simoni, S. (2005). Subcellular localization of an intracellular serine protease of 68 kDa in Leishmania (Leishmania) amazonensis promastigotes. Memórias do Instituto Oswaldo Cruz 100, 377383.
Mukhopadhyay, N. K., Shome, K., Saha, A. K., Hassell, J. R. and Glew, R. H. (1989). Heparin binds to Leishmania donovani promastigotes and inhibits protein phosphorylation. The Biochemical Journal 264, 517525.
Murray, P. J., Spithill, T. W. and Handman, E. (1989). The PSA-2 glycoprotein complex of Leishmania major is a glycosylphosphatidylinositol-linked promastigote surface antigen. The Journal of Immunology 143, 42214226.
Nader, H. B., Ferreira, T. M., Paiva, J. F., Medeiros, M. G., Jeronimo, S. M., Paiva, V. M. and Dietrich, C. P. (1984). Isolation and structural studies of heparan sulfates and chondroitin sulfates from three species of molluscs. The Journal of Biological Chemistry 259, 14311435.
Nader, H. B., Chavante, S. F., dos-Santos, E. A., Oliveira, T. W., de-Paiva, J. F., Jerônimo, S. M., Medeiros, G. F., de-Abreu, L. R., Leite, E. L., de-Sousa-Filho, J. F., Castro, R. A., Toma, L., Tersariol, I. L., Porcionatto, M. A. and Dietrich, C. P. (1999). Heparan sulfates and heparins: similar compounds performing the same functions in vertebrates and invertebrates? Brazilian Journal of Medical and Biological Research 32, 529538.
Naderer, T., Vince, J. E. and McConville, M. J. (2004). Surface determinants of Leishmania parasites and their role in infectivity in the mammalian host. Current Molecular Medicine 4, 649665.
Novozhilova, N. M. and Bovin, N. V. (2010). Structure, functions, and biosynthesis of glycoconjugates of Leishmania spp. cell surface. Biochemistry 75, 686694.
Oliveira, F. O. Jr., Alves, C. R., Calvet, C. M., Toma, L., Bouças, R. I., Nader, H. B., Castro Côrtes, L. M., Krieger, M. A., Meirelles, M. de N. and Souza Pereira, M. C. (2008). Trypanosoma cruzi heparin-binding proteins and the nature of the host cell heparan sulfate-binding domain. Microbial and Pathogenesis 44, 329338.
Ortega-Barria, E. and Pereira, M. E. (1991). A novel T. cruzi heparin binding protein promotes fibroblast adhesion and penetration of engineered bacteria and trypanosomes into mammalian cells. Cell 67, 411421.
Pimenta, P. F., Modi, G. B., Pereira, S. T., Shahabuddin, M. and Sacks, D. L. (1997). A novel role for the peritrophic matrix in protecting Leishmania from the hydrolytic activities of the sand fly midgut. Parasitology 115, 359369.
Quinn, J. G., O'Neill, S., Doyle, A., McAtamney, C., Diamond, D., McCraith, B. D. and O'Kennedy, R. (2000). Development and application of surface Plasmon resonance-based biosensors for the detection of cell-ligand interactions. Analytical Biochemistry 261, 135143.
Rangel, E. F. and Lainson, R. (2003). Ecologia das leishmanioses. Transmissores de leishmaniose tegumentar Americana. In Flebotomíneos do Brasil (ed. Rangel, E. F. and Lainson, R.), pp. 291309. Fiocruz, Rio de Janeiro, Brazil.
Rathore, D., McCutchan, T. F., Garboczi, D. N., Toida, T., Hernáiz, M. J., LeBrun, L. A., Lang, C. S. and Linhardt, R. J. (2001). Direct measurement of the interactions of glycosaminoglycans and a heparin decasaccharide with the malaria circumsporozoite protein. Biochemistry 40, 1151811524.
Rebello, K. M., Côrtes, L. M., Pereira, B. A., Pascarelli, B. M., Côrte-Real, S., Finkelstein, L. C., Pinho, R. T., d'Avila-Levy, C. M. and Alves, C. R. (2009). Cysteine proteinases from promastigotes of Leishmania (Viannia) braziliensis. Parasitology Research 106, 95104.
Reithinger, R., Dujardin, J. C., Louzir, H., Pirmez, C., Alexander, B. and Brooker, S. (2007). Cutaneous leishmaniasis. The Lancet Infectious Diseases 7, 581596.
Sacks, D. and Kamhawi, S. (2001). Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. Annual Review of Microbiology 55, 453–83.
Soares, R. P., Margonari, C., Secundino, N. C., Macedo, M. E., da Costa, S. M., Rangel, E. F., Pimenta, P. F. and Turco, S. J. (2010). Differential midgut attachment of Leishmania (Viannia) braziliensis in the sand flies Lutzomyia (Nyssomyia) whitmani and Lutzomyia (Nyssomyia) intermedia. Journal of Biomedicine and Biotechnology 2010, doi: 10.1155/2010/439174 <http://dx.crossref.org/10.1155%2F2010%2F439174>.
Soares, R. P., Cardoso, T. L., Barron, T., Araújo, M. S., Pimenta, P. F. and Turco, S. J. (2005). Leishmania braziliensis: a novel mechanism in the lipophosphoglycan regulation during metacyclogenesis. International Journal for Parasitology 35, 245253.
Soong, L. (2008). Modulation of dendritic cell function by Leishmania parasites. The Journal of Immunology 180, 43554360.
Strauss, A. H., Nader, H. B., Takahashi, H. K. and Dietrich, C. P. (1982). Ontogeny of heparin in mammals: a correlation with the appearance of mast cells in tissues. Anais da Academia Brasileira de Ciências 54, 439448.
Symons, F. M., Murray, P. J., Ji, H., Simpson, R. J., Osborn, A. H. and Cappai, R. (1994). Characterization of a polymorphic family of integral membrane proteins in promastigotes of different Leishmania species. Molecular and Biochemical Parasitology 67, 103113.
Tanious, F. A., Nguyen, B. and Wilson, W. D. (2008). Biosensor-surface plasmon resonance methods for quantitative analysis of biomolecular interactions. Methods in Cell Biology 84, 5377.
Terao-Muto, Y., Yoneda, M., Seki, T., Watanabe, A., Tsukiyama-Kohara, K., Fujita, K. and Kai, C. (2008). Heparin-like glycosaminoglycans prevent the infection of measles virus in SLAM-negative cell lines. Antiviral Research 80, 370376.
Velasco-Garcia, M. N. (2009). Optical biosensors for probing at the cellular level: a review of recent progress and future prospects. Seminars in Cell & Developmental Biology 20, 2733.
Volf, P., Svobodova, M. and Dvorakova, E. (2001). Bloodmeal digestion, Leishmania major infections in Phlebotomus duboscqi: effect of carbohydrates inhibiting midgut lectin activity. Medicine Veterinary Entomology 15, 281286.
Yao, C. (2010). Major surface protease of trypanosomatids: one size fits all? Infection and Immunity 78, 2231.

Keywords

Leishmania (Viannia) braziliensis: insights on subcellular distribution and biochemical properties of heparin-binding proteins

  • LUZIA MONTEIRO DE CASTRO CÔRTES (a1), MIRIAN CLAUDIA DE SOUZA PEREIRA (a2), FRANCISCO ODÊNCIO RODRIGUES DE OLIVEIRA (a1) (a2), SUZANA CORTE-REAL (a3), FRANKLIN SOUZA DA SILVA (a1), BERNARDO ACÁCIO SANTINI PEREIRA (a1), MARIA DE FÁTIMA MADEIRA (a4), MARCIA TEREZINHA BARONI DE MORAES (a5), REGINALDO PEÇANHA BRAZIL (a6) and CARLOS ROBERTO ALVES (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed