Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-18T23:44:13.432Z Has data issue: false hasContentIssue false

Influence of host and parasite genotypes on immunological control of Theileria parasites

Published online by Cambridge University Press:  06 April 2009

W. I. Morrison
Affiliation:
Institute for Animal Health, Compton Laboratory, Compton, Nr. Newbury, Berkshire RG20 7NN, UK

Summary

Infections with Theileria parva in the African buffalo are invariably asymptomatic, whereas infections in cattle usually result in clinical disease, the severity of which varies in different populations of cattle. The parasite exhibits antigenic heterogeneity, which in cattle manifests as differences between parasite strains in their cross-protective properties. A series of studies on T cell responses to T. parva in cattle have demonstrated that class I MHC-restricted cytotoxic T lymphocytes (CTL), specific for parasitized lymphoblasts, are important mediators of immunity. Cytotoxic T cell responses frequently display parasite strain-restricted specificities which appear to correlate with the capacity of strains to cross-protect. The strain specificity of CTL responses varies in animals immunized with the same parasite strain and is influenced by both host and parasite genotype. Recent studies have provided evidence that there is competition between epitopes for induction of CTL responses, which can result in a bias to strain-specific epitopes. These properties of the CTL response have important implications for vaccination. Thus, in designing a vaccine, it may be possible, by selecting parasite proteins containing appropriate CTL epitopes, to generate CTL responses that protect against a wide range of parasite strains. Although there are no comparable data on CTL responses in the buffalo, it is considered that the features of the immune response described for cattle would be advantageous for survival of parasite populations in the buffalo. Specifically, a bias in the immune responses to strain-specific determinants should favour establishment of infection in buffalo already carrying the parasite and allow fluctuation in the levels of different parasite strains during the course of persistent infection.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allsopp, B. A. & Allsopp, M. T. E. P. (1988). Theileria parva: genomic DNA studies reveal intra-specific sequence diversity. Molecular and Biochemical Parasitology 28, 7784.CrossRefGoogle ScholarPubMed
Baldwin, C. L., Black, S. J., Brown, W. C., Conrad, P. A., Goddeeris, B. M., Kinuthia, S. W., Lalor, P. A., MacHugh, N. D., Morrison, W. I., Morzaria, S. P., Naessens, J. & Newson, J. (1988). Bovine T cells, B cells, and null cells are transformed by the protozoan parasite Theileria parva. Infection and Immunity 56, 462–7.CrossRefGoogle Scholar
Baldwin, C. L., Goddeeris, B. M. & Morrison, W. I. (1987). Bovine helper T-cell clones specific for lymphocytes infected with Theileria parva (Muguga). Parasite Immunology 9, 499513.CrossRefGoogle ScholarPubMed
Baldwin, C. L., Malu, M. N. & Grootenhuis, J. G. (1988). Evaluation of cytotoxic lymphocytes and their parasite strain specificity from African buffalo infected with Theileria parva. Parasite Immunology 10, 393403.CrossRefGoogle ScholarPubMed
Baldwin, C. L., Malu, M. N., Kinuthia, S. W., Conrad, P. A. & Grootenhuis, J. G. (1986). Comparative analysis of infection and transformation of lymphocytes from African buffalo and Boran cattle with Theileria parva subsp. parva and T. parva subsp. lawrencei. Infection and Immunity 53, 186–91.Google Scholar
Bennink, J. R., Yewdell, J. W., Smith, G. L., Moller, C. & Moss, B. (1984). Recombinant vaccinia virus primes and stimulates influenza virus HA-specific CTL. Nature 311, 578–9.CrossRefGoogle Scholar
Bensaid, A., Kaushal, A., Baldwin, C. L., Clevers, H., Young, J. R., Kemp, S. J., MacHugh, N. D., Toye, P. G. & Teale, A. J. (1991). Identification of expressed bovine class I MHC genes at two loci and demonstration of physical linkage. Immunogenetics 33, 247–54.Google Scholar
Blum-Tirouvanziam, U., Beghdadi-Rais, C., Roggero, M. A., Valmori, D., Bertholet, S., Bron, C., Fasel, N. & Corradin, G. (1994). Elicitation of specific cytotoxic T cells by immunization with malaria soluble synthetic polypeptides. Journal of Immunology 153, 4134–41.Google Scholar
Brown, C. G. D. (1981). Application of in vitro techniques to vaccination against theileriosis. In Advances in the Control of Theileriosis, ed. (Irvin, A. D., Cunningham, M. P. & Young, A. S.), pp. 104–19. The Hague: Martinus Nijhoff.CrossRefGoogle Scholar
Brown, C. G. D., Stagg, D. A., Purnell, R. E., Kanhai, G. K. & Payne, R. c. (1973). Infection and transformation of bovine lymphoid cells in vitro by infective particles of Theileria parva. Nature 245, 101–3.Google Scholar
Brown, W. C., Sugimoto, C. & Grab, D. J. (1989). Theileria parva: bovine helper T cell clone specific for both infected lymphocytes and schizont membrane antigens. Experimental Parasitology 69, 234–48.CrossRefGoogle ScholarPubMed
Burridge, M. J. (1975). The role of wild mammals in the epidemiology of bovine theileriosis in East Africa. Journal of Wildlife Diseases 11, 6875.Google Scholar
Buscher, G., Morrison, W. I. & Nelson, R. T. (1984). Titration in cattle of infectivity and immunogenicity of autologous cell lines infected with Theileria parva. Veterinary Parasitology 15, 2938.Google Scholar
Conrad, P. A., Baldwin, C. L., Brown, W. C., Sohanpal, B., Dolan, T. T., Goddeeris, B. M., De Martini, J. C. & Ole-Moi Yoi, o. K. (1989 a). Infection of bovine T cell clones with genotypically distinct Theileria parva parasites and analysis of their cell surface phenotype. Parasitology 99, 205–13.Google Scholar
Conrad, P. A., Iams, K., Brown, W. C., Sohanpal, B. & Ole-Moiyoi, O. K. (1987 a). DNA probes detect genomic diversity in Theileria parva stocks. Molecular and Biochemical Parasitology 25, 213–26.Google Scholar
Conrad, P. A., Ole-Moi Yoi, O. K., Baldwin, C. L., Dolan, T. T., O'Callaghan, C. J., Njamunggeh, R. E. G., Grootenhuis, J. G., Stagg, D. A., Leitch, B. L. & Young, A. S. (1989 b). Characterization of buffalo-derived theileria parasites with monoclonal antibodies and DNA probes. Parasitology 98, 179–88.Google Scholar
Conrad, P. A., Stagg, D. A., Grootenhuis, J. G., Irvin, A. D., Newson, J., Njamunggeh, R. E. G., Rossiter, P. B. & Young, A. S. (1987 b). Isolation of Theileria parasites from African buffalo (Syncerus coffer) and characterization with anti-schizont monoclonal antibodies. Parasitology 94, 413–23.Google Scholar
Davies, C. J., Joosten, I., Bernoco, D., Arriens, M. A., Bester, J., Ceriotti, G., Ellis, S., Hensen, E. J., Hines, Hines H. C., Horin, P., Kristensen, B., Lewin, H. A., Meggiolaro, D., Morgan, A. L. G., Morita, M., Nilsson, Ph. R., Oliver, R. A., Orlova, A., ØStergård, H., Park, C. A., Schuberth, H.-J., Simon, M., Spooner, R. L. & Stewart, J. A. (1994). Polymorphism of bovine bovine MHC class I genes. Joint report of the fifth international bovine lymphocyte antigen (BoLA) workshop, Interlaken, Switzerland, 1 August 1992. European Journal of Immunogenetics 21, 239–58.Google Scholar
Deres, K., Schild, H., Wiesmüller, K.-H., Jung, G. & Rammensee, H.-G. (1989). In vivo priming of virus-specific cytotoxic T lymphocytes with synthetic lipopeptide vaccine. Nature 342, 561–4.Google Scholar
Dobbelaere, D. A. E., Shapiro, S. Z. & Webster, P. (1985). Identification of a surface antigen on Theileria parva sporozoites by monoclonal antibody. Proceedings of the National Academy of Sciences USA 82, 1771–5.CrossRefGoogle ScholarPubMed
Dobbelaere, D. A. E., Spooner, P. R., Barry, W. C. & Irvin, A. D. (1984). Monoclonal antibody neutralises the sporozoite stage of different Theileria parva stocks. Parasite Immunology 6, 361–70.CrossRefGoogle ScholarPubMed
Emery, D. L. (1981). Adoptive transfer of immunity to infection with Theileria parva (East Coast fever) between cattle twins. Research in Veterinary Science 30, 364–7.Google Scholar
Emery, D. L., Eugui, E. M., Nelson, R. T. & Tenywa, T. (1981 a). Cell-mediated immune responses to Theileria parva (East Coast fever) during immunization and lethal infections in cattle. Immunology 43, 323–5.Google Scholar
Emery, D. L., MacHugh, N. D. & Morrison, W. I. (1988). Theileria parva (Muguga) infects bovine T lymphocytes in vivo and induces co-expression of BoT4 and BoT8. Parasite Immunology 10, 379–91.CrossRefGoogle Scholar
Emery, D. L., Morrison, W. I., Nelson, R. T. & Murray, M. (1981 b). The induction of cell-mediated immunity in cattle inoculated with cell lines parasitised with Theileria parva. In Advances in the Control of Theileriosis ed. (Irvin, A. D., Cunningham, M. P. & Young, A. S.), pp. 295310. The Hague: Martinus Nijhoff.CrossRefGoogle Scholar
Emery, D. L., Morrison, W. I., Buscher, G. & Nelson, R. T. (1982). Generation of cell-mediated cytotoxicity to Theileria parva (East Coast fever) after inoculation of cattle with parasitised lymphoblasts. Journal of Immunology 128, 195200.CrossRefGoogle Scholar
Epstein, H. (1971). The Origin of the Domestic Animals of Africa, Vol. I, pp. 327556. New York: Africana Publishing Corporation.Google Scholar
Eugui, E. M. & Emery, D. L. (1981). Genetically restricted cell-mediated cytotoxicity in cattle immune to Theileria parva. Nature 290, 251–4.CrossRefGoogle ScholarPubMed
Fawcett, D. W., Buscher, G. & Doxsey, S. (1982). Salivary gland of the tick vector of East Coast fever. III. The ultrastructure of sporogony in Theileria parva. Tissue and Cell 14, 183206.CrossRefGoogle ScholarPubMed
Fawcett, D., Musoke, A. & voigt, w. (1984). Interaction of sporozoites of Theileria parva with bovine lymphocytes in vitro. 1. Early events after invasion. Tissue and Cell 16, 873–84.Google Scholar
Feltkamp, M. C. W., Smits, H. L., Vierboo, M. P. M., Minnaar, R. P., De Jongh, B M., Drijfhout, J. W., Ter Schegget, J., Melief, C. J. M. & Kasst, W. M. (1993). Vaccination with cytotoxic T lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type 16-transformed cells. European Journal of Immunology 23, 2242–9.Google Scholar
Fynan, E. F., Webster, R. G., Fuller, D. H., Haynes, J. R., Santoro, J. C. & Robinson, H. L. (1993). DNA vaccines: protective immunizations by parenteral, mucosal, and genegun inoculations. Proceedings of the National Academy of Sciences USA 90, 11478–82.Google Scholar
Goddeeris, B. M., Morrison, W. I. & Teale, A. J. (1986). Generation of bovine cytotoxic cell lines specific for cells infected with the protozoan parasite Theileria parva and restricted by products of the major histocompatibility complex. European Journal of Immunology 16, 1243–9.Google Scholar
Goddeeris, B. M., Morrison, W. I., Teale, A. J., Bensaid, A. & Baldwin, C. L. (1986). Bovine cytotoxic T-cell clones specific for cells infected with the protozoan parasite Theileria parva: parasite strain specificity and class I major histocompatibility complex restriction. Proceedings of the National Academy of Sciences USA 83, 5238–42.CrossRefGoogle ScholarPubMed
Goddeeris, B. M., Morrison, W. I., Toye, P. G. & Bishop, R. (1990). Strain specificity of bovine Theileria parva-specific cytotoxic T cells is determined by the phenotype of the restricting class I MHC. Immunology 69, 3844.Google Scholar
Grootenhuis, J. G., Leitch, B. L., Stagg, D. A., Dolan, T. T. & Young, A. s. (1987). Experimental induction of Theileria parva lawrencei carrier state in an African buffalo (Syncerus caffer). Parasitology 94, 425–31.CrossRefGoogle Scholar
Hill, A. B., Mullbacher, A. & Blanden, R. V. (1993). Ir genes, peripheral cross-tolerance and immuno-dominance in MHC class I-restricted T-cell responses: An old quagmire revisited. Immunological Reviews 133, 7591.Google Scholar
Hill, A. V. S., Allsopp, C. E. M. & Kwiatkowski, D. (1991). Common West African HLA antigens are associated with protection from severe malaria. Nature 352, 595600.Google Scholar
Hill, A. V. S., Elvin, J. & Willis, A. (1992). Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature 360, 434–9.Google Scholar
Hulliger, L., Wilde, J. K. H., Brown, C. G. D. & Turner, L. (1964). Mode of multiplication of Theileria in cultures of bovine lymphocytic cells. Nature 203, 728–30.Google Scholar
Irvin, A. D., Dobbelaere, D. A. E., MwaMachi, E. M., Minami, T., Spooner, P. R. & Ocama, J. G. R. (1983). Immunisation against East Coast fever: correlation between monoclonal antibody profiles of Theileria parva stocks and cross immunity in vivo. Research in Veterinary Science 35, 341–6.Google Scholar
Irvin, A. D. & Morrison, W. I. (1987). Immunopathology, immunology and immunoprophylaxis of Theileria infections. In Immune Responses in Parasitic Infections: Immunology, Immunopathology and Immunoprophylaxis, ed., Vol. 3 (Soulsby, E. J. L.), pp. 223–74. Boca Raton, FL: CRC Press.Google Scholar
Irvin, A. D., Ocama, J. G. R. & Spooner, P. R. (1982). Cycle of bovine lymphoblastoid cells parasitised by Theileria parva. Research in Veterinary Science 33, 298304.CrossRefGoogle ScholarPubMed
Johnson, R. P., Hammond, S. A., Trocha, A., Siliciano, R. F. & Walker, B. D. (1994). Induction of a major histocompatibility complex class I-restricted cytotoxic-lymphocyte response to a highly conserved region of human immunodeficiency virus type I (HIV-1) gp 120 in seronegative humans immunised with a candidate HIV-1 vaccine. Journal of Virology 68, 3145–53.Google Scholar
Kast, W. M., Roux, L., Curren, J., Blom, H. J. J., Voordouw, A. C., Meloen, R. H., Kolakofsky, D. & Melief, C. J. M. (1991). Protection against lethal Sendai virus infection by in vivo priming of virus-specific cytotoxic T lymphocytes with a free synthetic peptide. Proceedings of the National Academy of Sciences USA 88, 2283–7.Google Scholar
Kemp, S. J., Spooner, R. L. & Teale, A. J. (1988). A comparative study of major histocompatibility complex antigens in East African and European cattle breeds. Animal Genetics 19, 1729.Google Scholar
Malmquist, W. A., Nyindo, M. B. A. & Brown, C. G. D. (1970). East Coast fever: cultivation in vitro of bovine spleen cell lines infected and transformed by Theileria parva. Tropical Animal Health and Production 2, 139–45.Google Scholar
McKeever, D. J., Taracha, E. L. N., Innes, E. L., MacHugh, N. D., Awino, E., Goddeeris, B. M. & Morrison, W. I. (1994). Adoptive transfer of immunity to Theileria parva in the CD8+ fraction of responding efferent lymph. Proceedings of the National Academy of Sciences, USA 91, 1959–63.Google Scholar
McMichael, A. J. & Walker, B. D. (1994). Cytotoxic T lymphocyte epitopes: implications for HIV vaccines. AIDS 8, 155–73.Google Scholar
Mehlhorn, H. & Schein, E. (1984). The piroplasms: life cycle and sexual stages. Advances in Parasitology 23, 37103.Google Scholar
Minami, T., Spooner, P. R., Irvin, A. D., Ocama, J. G. R., Dobbelaere, D. A. E. & Fujinaga, T. (1983). Characterisation of stocks of Theileria parva by monoclonal antibody profiles. Research in Veterinary Science 35, 334–0.CrossRefGoogle ScholarPubMed
Moll, G., Lohding, A. & Young, A. S. (1981). The epidemiology of theileriosis in the Transmara Division, Kenya. In Advances in the Control of Theileriosis pp. 5659, (ed. Irvin, A. D., Cunningham, M. P. & Young, A. S.). The Hague: Martinus Nijhoff.Google Scholar
Morrison, W. I., Buscher, G., Murray, M., Emery, D. L., Masake, R. A., Cook, R. H. & Wells, P. W. (1981). Theileria parva: kinetics of infection in the lymphoid system of cattle. Experimental Parasitology 52, 248–60.Google Scholar
Morrison, W. I., Goddeeris, B. M., Teale, A. J., Groocock, C. M., Kemp, S. J. & Stagg, D. A. (1978). Cytotoxic T-cells elicited in cattle challenged with Theileria parva (Muguga): evidence for restriction by class I MHC determinants and parasite strain specificity. Parasite Immunology 9, 563–78.Google Scholar
Morrison, W. I., Goddeeris, B. M., Brown, W. C., Baldwin, C. L. & Teale, A. J. (1989). Theileria parva in cattle: characterisation of infected lymphocytes and the immune responses they provoke. Veterinary Immunology and Immunopathology 20, 213–37.Google Scholar
Morrison, W. I. & Goddeeris, B. M. (1990). Cytotoxic T cells in immunity to Theileria parva in cattle. In T Cell Paradigms in Parasitic and Bacterial Infections. (ed. Kaufman, S. H. E.). Current Topics in Microbiology and Immunology 155, 7993.CrossRefGoogle Scholar
Morrison, W. I., Taracha, E. L. N. & Mckeever, D. J. (1995). Contribution of T-cell responses to immunity and pathogenesis in infections with Theileria parva. Parasitology Today 11, 1418.Google Scholar
Morzaria, S. P., Bishop, R., Young, A., Dolan, T., Spooner, P., Mwakima, F. & Skilton, R. (1994). Analysis of recombinant Theileria parva parasites. ILRAD, Annual Scientific Report, p3.Google Scholar
Morzaria, S. P., Dolan, T. T., Norval, R. A. I., Bishop, R. P. & Spooner, P. R. (1995). Generation and characterization of cloned Theileria parva parasites. Parasitology 111, 3949.Google Scholar
Morzaria, S. P., Irvin, A. D., Taracha, E., Spooner, P. R., Voigt, W. P., Fujinaga, T. & Katende, J. (1987). Immunisation against East Coast fever: the use of selected stocks of Theileria parva for immunisation of cattle exposed to field challenge. Veterinary Parasitology 23, 2341.CrossRefGoogle ScholarPubMed
Morzaria, S. P., Musoke, A. J., Nene, V. & Dolan, T. T. (1988). Serological and immunochemical analysis of field sera from ECF endemic Rusinga Island. ILRAD Annual Scientific Report, p. 8.Google Scholar
Morzaria, S. P., Spooner, P. R., Bishop, R. P., Musoke, A. J. & Young, J. R. (1990). Sfi I and Not I polymorphisms in Theileria stocks detected by pulsed field gel electrophoresis. Molecular and Biochemical Parasitology 40, 203–12.Google Scholar
Morzaria, S. P. & Young, J. R. (1992). Restriction mapping of the genome of the protozoan parasite Theileria parva. Proceedings of the National Academy of Sciences USA 89, 5241–5.Google Scholar
Musoke, A. J., Nantulya, V. M., Rurangirwa, F. R. & Buscher, G. (1984). Evidence for a common protective antigenic determinant on sporozoites of several Theileria parva strains. Immunology 52, 231–8.Google Scholar
Musoke, A. J., Morzaria, S. P., Nkonge, C., Jones, E. & Nene, V. (1992). A recombinent sporozoite surface antigen of Theileria parva induces protection in cattle. Proceedings of the National Academy of Sciences USA 89, 514–18.Google Scholar
Ndungu, S. G. (1994). Comparison of susceptibility and disease resistance of Bos taurus and Bos indicus cattle to Theileria parva infection. MPhil Thesis, University of Edinburgh.Google Scholar
Nowak, M. A., May, R. M., Phillips, R. E., Rowland-Jones, S., Lalloo, D. G., Mcadam, S., Klenerman, P., Köppe, B., Sigmund, K., Bangham, C. R. M. & Mcmichael, A. J. (1995). Antigenic oscillations and shifting immunodominance in HIV-1 infections. Nature 375, 606–11.CrossRefGoogle ScholarPubMed
Phillips, R. E., Rowland-Jones, S., Nixon, D. F., Gotch, F. M., Edwards, J. P., Ogunlesi, A. O., Elvin, J. G., Rothbard, J. A., Bangham, C. R. M., Rizza, C. R. & Mcmichael, A. J. (1991). Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 354, 453–9.Google Scholar
Pinder, M. & Hewett, R. (1980). Monoclonal antibodies detect antigenic diversity in Theileria parva parasites. Journal of Immunology 124, 1000–1.Google Scholar
Pirie, H. M., Jarrett, W. F. H. & Crighton, G. W. (1970). Studies on vaccination against East Coast fever using macroschizonts. Experimental Parasitology 27, 343–9.CrossRefGoogle ScholarPubMed
Radley, D. E., Brown, C. G. D., Burridge, M. J., Cunningham, M. P., Kirimi, I. M., Purnell, R. E. & Young, A. S. (1975 a). East Coast fever. 1. Chemoprophylactic immunization of cattle against Theileria parva (Muguga) and five theileria strains. Veterinary Parasitology 1, 3541.Google Scholar
Radley, D. E., Brown, C. G. D., Cunningham, M. P., Kimber, C. D., Musisi, F. L., Payne, R. C., Purnell, R. E., Stagg, S. M. & Young, A. S. (1975 c). East Coast fever. 3. Chemoprophylactic immunization of cattle using oxytetracycline and a combination of theileria strains. Veterinary Parasitology 1, 5160.Google Scholar
Radley, D. E., Young, A. S., Brown, C. G. D., Burridge, M. J., Cunningham, M. P., Musisi, F. L. & Purnell, R. E. (1975 b). East Coast fever. 2. Cross-immunity trials with a Kenya strain or Theileria lawrencei. Veterinary Parasitology 1, 4350.CrossRefGoogle Scholar
Shapiro, S. Z., Fujisaki, K., Morzaria, S. P., Webster, P., Fujinaga, T., Spooner, P. R. & Irvin, A. D. (1987). A life cycle stage-specific antigen of Theileria parva recognized by anti-macroschizont monoclonal antibodies. Parasitology 94, 2937.Google Scholar
Shaw, M. K., TiLney, L. G. & Musoke, A. J. (1991). The entry of Theileria parva sporozoites into blood lymphocytes: Evidence for MHC class I involvement. Journal of Cell Biology 113, 87101.CrossRefGoogle ScholarPubMed
Taracha, E. L. N., Goddeeris, B. M., Morzaria, S. P. & Morrison, W. I. (1995). Parasite strain specificity of precursor cytotoxic T cells in individual animals correlates with cross-protection in cattle challenged with Theileria parva. Infection and Immunity 63, 1258–62.Google Scholar
Taracha, E. L. N., Goddeeris, B. M., Scott, J. R. & Morrison, W. I. (1992). Standardization of a technique for analysing the frequency of parasite-specific cytotoxic T lymphocyte precursors in cattle immunised with Theileria parva. Parasite Immunology 14, 143–54.Google Scholar
Taracha, E. L. N., Goddeeris, B. M., Teale, A. J., Kemp, S. J. & Morrison, W. I. (1995). Parasite strain specificity of bovine cytotoxic T cell responses to Theileria parva is determined primarily by immunodominance. Journal of Immunology 155, 4854–60.Google Scholar
Toye, P. G., Goddeeris, B. M., Iams, K., Musoke, A. J. & Morrison, W. I. (1991). Characterization of a polymorphic immunodominant molecule in sporozoites and schizonts of Theileria parva. Parasite Immunology 13, 4962.Google Scholar
Toye, P. G., Machugh, N. D., Bensaid, A. M., Alberti, S., Teale, A. J. & Morrison, W. I. (1990). Transfection into mouse L cells of genes encoding two serologically and functionally distinct bovine class I MHC molecules from a MHC-homozygous animal: evidence for a second class I locus in cattle. Immunology 70, 20–6.Google Scholar
Uilenberg, G., Schreuder, B. E. C., Silayo, R. S. & Mpangala, C. (1976). Studies on Theileriidae (Sporozoa) in Tanzania, IV. A field trial on immunisation against East Coast fever (Theileria parva infection of cattle). Tropenmedizin und Parasitologie 27, 329–36.Google Scholar
Ulmer, J. B., Donnelly, J. J., Parker, S. E., Rhodes, G H., Felgner, P. L., Dwarki, V. J., Gromkowski, S. H., Deck, R. R., Dewitt, C. M., Friedman, A., Hawe, L. A., Leander, K. R., Martinez, D., Perry, H. C., Shiver, J. W., Montgomery, D. L. & Liu, M. A. (1993). Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259, 1745–9.CrossRefGoogle ScholarPubMed
Wettstein, P. J. & Bailey, D. W. (1982). Immunodominance in the immune response to multiple histocompatibility antigens. Immunogenetics 16, 4758.Google Scholar
Young, A. S. (1981). The epidemiology of theileriosis in East Africa. In Advances in the Control of Theileriosis (ed. Irvin, A. D., Cunningham, M. P. & Young, A. S.), pp. 3855. The Hague: Martinus Nijhoff.Google Scholar
Young, A. S., Brown, C. G. D., Burridge, M. J., Cunningham, M. P., Kirimi, I. M. & Irvin, A. D. (1973). Observations on the cross-immunity between Theileria lawrencei (Serengeti) and Theileria parva (Muguga) in cattle. International Journal for Parasitology 3, 723–8.Google Scholar
Young, A. S., Brown, C. G. D., Burridge, M. J., Grootenhuis, J. G., Kanhai, G. K., Purnell, R. E. & Stagg, D. A. (1978). The incidence of Theilerial parasites in East African buffalo (Syncerus coffer). Tropenmedizin und Parasitologie 29, 281–8.Google Scholar
Young, A. S., Brown, C. G. D., Burridge, M. J., Grootenhuis, J. G., Kanhai, G. K., Purnell, R. E. & Stagg, D. A. (1978). The incidence of Theilerial parasites in East African buffalo (Syncerus coffer). Tropenmedizin und Parasitologie 29, 281–8.Google Scholar
Young, A. S., Leitch, B. L., Newson, R. M. & Cunningham, M. P. (1986). Maintenance of Theileria parva parva infection in an endemic area of Kenya. Parasitology 93, 916.CrossRefGoogle Scholar
Zinkernagel, R. M., Althage, A., Cooper, S., Kreeb, J., Klein, P. A., Sefton, B., Flaherty, L., Stimpfling, J., Shreffler, D. & Klein, J. (1978). Ir-genes in H-2 regulate generation of anti-viral cytotoxic T cells. Mapping to K or D and dominance of unresponsiveness. Journal of Experimental Medicine 148, 592605.Google Scholar