Skip to main content Accessibility help

Hsp90: a chaperone for HIV-1



HIV-1 replication has been intensively investigated over the past 30 years. Hsp90 is one of the most abundant proteins in human cells, important in the formation and function of several protein complexes that maintain cell homeostasis. Remarkably, the impact of Hsp90 on HIV-1 infection has started to be appreciated only recently. Hsp90 has been shown to (a) promote HIV-1 gene expression in acutely infected cells, (b) localize at the viral promoter DNA, (c) mediate enhanced replication in conditions of hyperthermia and (d) activate the P-TEFb complex, which is essential for efficient HIV-1 transcription. Hsp90 has been implicated in buffering deleterious mutations of the viral core and in the regulation of innate and acquired immune responses to HIV-1 infection. Therefore, Hsp90 is an important host factor promoting several steps of the HIV-1 life cycle. Several small Hsp90 inhibitors are in Phase II clinical trials for human cancers and might potentially be used to inhibit HIV-1 infection at multiple levels.


Corresponding author

* Corresponding author: The Wohl Virion Centre, MRC Centre for Medical Molecular Virology, Division of Infection & Immunity, UCL, Cruciform Building, 90 Gower Street, London WC1E 6BT, UK. E-mail:


Hide All
Archin, N. M., Liberty, A. L., Kashuba, A. D., Choudhary, S. K., Kuruc, J. D., Crooks, A. M., Parker, D. C., Anderson, E. M., Kearney, M. F., Strain, M. C., Richman, D. D., Hudgens, M. G., Bosch, R. J., Coffin, J. M., Eron, J. J., Hazuda, D. J. and Margolis, D. M. (2012). Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487, 482485. doi: 10.1038/nature11286.
Baldauf, H. M., Pan, X., Erikson, E., Schmidt, S., Daddacha, W., Burggraf, M., Schenkova, K., Ambiel, I., Wabnitz, G., Gramberg, T., Panitz, S., Flory, E., Landau, N. R., Sertel, S., Rutsch, F., Lasitschka, F., Kim, B., König, R., Fackler, O. T. and Keppler, O. T. (2012). SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nature Medicine 18, 16821689. doi: 10.1038/nm.2964.
Berger, E. A., Murphy, P. M. and Farber, J. M. (1999). Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annual Review of Immunology 17, 657700. doi: 10.1146/annurev.immunol.17.1.657.
Bieniasz, P. D., Grdina, T. A., Bogerd, H. P. and Cullen, B. R. (1999). Recruitment of cyclin T1/P-TEFb to an HIV type 1 long terminal repeat promoter proximal RNA target is both necessary and sufficient for full activation of transcription. Proceedings of the National Academy of Sciences USA 96, 77917796. doi: 10.1073/pnas.96.14.7791.
Borrow, P. (2011). Innate immunity in acute HIV-1 infection. Current Opinion in HIV and AIDS 6, 353363. doi: 10.1097/COH.0b013e3283495996.
Boukli, N. M., Shetty, V., Cubano, L., Ricaurte, M., Coelho-Dos-Reis, J., Nickens, Z., Shah, P., Talal, A. H., Philip, R. and Jain, P. (2012). Unique and differential protein signatures within the mononuclear cells of HIV-1 and HCV mono-infected and co-infected patients. Clinical Proteomics 9, 11. doi: 10.1186/1559-0275-9-11.
Bouwmeester, T., Bauch, A., Ruffner, H., Angrand, P.-O., Bergamini, G., Croughton, K., Cruciat, C., Eberhard, D., Gagneur, J., Ghidelli, S., Hopf, C., Huhse, B., Mangano, R., Michon, A.-M., Schirle, M., Schlegl, J., Schwab, M., Stein, M. A., Bauer, A., Casari, G., Drewes, G., Gavin, A.-C., Jackson, D. B., Joberty, G., Neubauer, G., Rick, J., Kuster, B. and Superti-Furga, G. (2004). A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nature Cell Biology 6, 97105. doi: 10.1038/ncb1086.
Brenchley, J. M., Schacker, T. W., Ruff, L. E., Price, D. A., Taylor, J. H., Beilman, G. J., Nguyen, P. L., Khoruts, A., Larson, M., Haase, A. T. and Douek, D. C. (2004). CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. Journal of Experimental Medicine 200, 749759. doi: 10.1084/jem.20040874.
Briant, L. (2011). HIV-1 assembly, release and maturation. World Journal of AIDS 1, 111130. doi: 10.4236/wja.2011.14017.
Bukrinsky, M. I., Sharova, N., Dempsey, M. P., Stanwick, T. L., Bukrinskaya, A. G., Haggerty, S. and Stevenson, M. (1992). Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proceedings of the National Academy of Sciences USA 89, 65806584.
Buzon, M. J., Massanella, M., Llibre, J. M., Esteve, A., Dahl, V., Puertas, M. C., Gatell, J. M., Domingo, P., Paredes, R., Sharkey, M., Palmer, S., Stevenson, M., Clotet, B., Blanco, J. and Martinez-Picado, J. (2010). HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nature Medicine 16, 460465. doi: 10.1038/nm.2111.
Chan, J. K. L. and Greene, W. C. (2011). NF-κB/Rel: agonist and antagonist roles in HIV-1 latency. Current Opinion in HIV and AIDS 6, 1218. doi: 10.1097/COH.0b013e32834124fd.
Chun, T., Finzi, D. and Margolick, J. (1995). In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nature Medicine 1, 12841290.
Chun, T., Carruth, L., Finzi, D. and Shen, X. (1997). Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 246, 170170. doi: 10.1038/246170a0.
Colin, L. and van Lint, C. (2009). Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies. Retrovirology 6, 111. doi: 10.1186/1742-4690-6-111.
Csermely, P. and Schnaider, T. (1998). The 90-kDa molecular chaperone family : structure, function, and clinical applications. A comprehensive review. Pharmacology and Therapeutics 79, 129168.
Descours, B., Cribier, A., Chable-Bessia, C., Ayinde, D., Rice, G., Crow, Y., Yatim, A., Schwartz, O., Laguette, N. and Benkirane, M. (2012). SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4(+) T-cells. Retrovirology 9, 87. doi: 10.1186/1742-4690-9-87.
Donahue, D. A. and Wainberg, M. A. (2013). Cellular and molecular mechanisms involved in the establishment of HIV-1 latency. Retrovirology 10, 11. doi: 10.1186/1742-4690-10-11.
Durand, C. M., Blankson, J. N. and Siliciano, R. F. (2012). Developing strategies for HIV-1 eradication. Trends in Immunology 33, 554562. doi: 10.1016/
Dutta, R. and Inouye, M. (2000). GHKL, an emergent ATPase/kinase superfamily. Trends in Biochemical Sciences 25, 2428. doi: 10.1016/S0968-0004(99)01503-0.
Emerman, M. (1998). HIV-1 regulatory/accessory genes: keys to unraveling viral and host cell biology. Science 280, 18801884. doi: 10.1126/science.280.5371.1880.
Fassati, A. (2006). HIV infection of non-dividing cells: a divisive problem. Retrovirology 3, 74. doi: 10.1186/1742-4690-3-74.
Fassati, A. (2012). Multiple roles of the capsid protein in the early steps of HIV-1 infection. Virus Research 170, 1524. doi: 10.1016/j.virusres.2012.09.012.
Finzi, D., Hermankova, M., Pierson, T., Carruth, L. M., Buck, C., Chaisson, R. E., Quinn, T. C., Chadwick, K., Margolick, J., Brookmeyer, R., Gallant, J., Markowitz, M., Ho, D. D., Richman, D. D. and Siliciano, R. F. (1997). Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278, 12951300. doi: 10.1126/science.278.5341.1295.
Flateau, C., Le Loup, G. and Pialoux, G. (2011). Consequences of HIV infection on malaria and therapeutic implications: a systematic review. Lancet Infectious Diseases 11, 541556. doi: 10.1016/S1473-3099(11)70031-7.
Floer, M., Bryant, G. O. and Ptashne, M. (2008). HSP90/70 chaperones are required for rapid nucleosome removal upon induction of the GAL genes of yeast. Proceedings of the National Academy of Sciences USA 105, 29752980. doi: 10.1073/pnas.0800053105.
Freed, E. O. and Martin, M. A. (2001). HIVs and their replication. In Fields Virology, 4th Edn. (ed. Knipe, D. M. and Howley, P. M.), pp. 19712042. Lippincott Williams and Wilkins, Philadelphia, USA.
Freeman, B. C. and Yamamoto, K. R. (2002). Disassembly of transcriptional regulatory complexes by molecular chaperones. Science 296, 22322235. doi: 10.1126/science.1073051.
Garrus, J. E., von Schwedler, U. K., Pornillos, O. W., Morham, S. G., Zavitz, K. H., Wang, H. E., Wettstein, D. A., Stray, K. M., Côté, M., Rich, R. L., Myszka, D. G. and Sundquist, W. I. (2001). Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 5565.
Geller, R., Vignuzzi, M., Andino, R. and Frydman, J. (2007). Evolutionary constraints on chaperone-mediated folding provide an antiviral approach refractory to development of drug resistance. Genes and Development 21, 195205. doi: 10.1101/gad.1505307.
Giorgi, J. V., Hultin, L. E., McKeating, J. A., Johnson, T. D., Owens, B., Jacobson, L. P., Shih, R., Lewis, J., Wiley, D. J., Phair, J. P., Wolinsky, S. M. and Detels, R. (1999). Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. Journal of Infectious Diseases 179, 859870.
Götte, M. (2012). The distinct contributions of fitness and genetic barrier to the development of antiviral drug resistance. Current Opinion in Virology 2, 644650. doi: 10.1016/j.coviro.2012.08.004.
Grimson, A., Srivastava, M., Fahey, B., Woodcroft, B. J., Chiang, H. R., King, N., Degnan, B. M., Rokhsar, D. S. and Bartel, D. P. (2008). Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature 455, 11931197. doi: 10.1038/nature07415.
Hakre, S., Chavez, L., Shirakawa, K. and Verdin, E. (2011). Epigenetic regulation of HIV latency. Current Opinion in HIV and AIDS 6, 1924. doi: 10.1097/COH.0b013e3283412384.
Hakre, S., Chavez, L., Shirakawa, K. and Verdin, E. (2012). HIV latency: experimental systems and molecular models. FEMS Microbiology Reviews 36, 706716. doi: 10.1111/j.1574-6976.2012.00335.x.
Hartl, F. (1996). Molecular chaperones in cellular protein folding. Nature 381, 571580. doi: 10.1038/381571a0.
Hashimoto, K., Baba, M., Gohnai, K., Sato, M. and Shigeta, S. (1996). Heat shock induces HIV-1 replication in chronically infected promyelocyte cell line OM10.1. Archives of Virology 1, 439447.
Ivanchenko, S., Godinez, W. J., Lampe, M., Kräusslich, H.-G., Eils, R., Rohr, K., Bräuchle, C., Müller, B. and Lamb, D. C. (2009). Dynamics of HIV-1 assembly and release. PLoS Pathogens 5, e1000652. doi: 10.1371/journal.ppat.1000652.
Joshi, P. and Stoddart, C. A. (2011). Impaired infectivity of ritonavir-resistant HIV is rescued by heat shock protein 90AB1. Journal of Biological Chemistry 286, 2458124592. doi: 10.1074/jbc.M111.248021.
Joshi, P., Sloan, B., Torbett, B. E. and Stoddart, C. A. (2013). Heat shock protein 90AB1 and hyperthermia rescue infectivity of HIV with defective cores. Virology 436, 162172. doi: 10.1016/j.virol.2012.11.005.
Kouyos, R. D., Leventhal, G. E., Hinkley, T., Haddad, M., Whitcomb, J. M., Petropoulos, C. J. and Bonhoeffer, S. (2012). Exploring the complexity of the HIV-1 fitness landscape. PLoS Genetics 8, e1002551. doi: 10.1371/journal.pgen.1002551.
Krebs, F., Hogan, T., Quiterio, S., Gartner, S. and Wigdahl, B. (2001). Lentiviral LTR-directed expression, sequence variation, and disease pathogenesis. In HIV Sequence Compendium 2001. Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA, pp. 2970.
Kwong, P. D., Wyatt, R., Robinson, J., Sweet, R. W., Sodroski, J. and Hendrickson, W. A. (1998). Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393, 648659. doi: 10.1038/31405.
Lang, W., Perkins, H. and Anderson, R. (1989). Patterns of T lymphocyte changes with human immunodeficiency virus infection: from seroconversion to the development of AIDS. Journal of Acquired Immune Deficiency Syndromes 2, 6369.
Lazaro, E., Kadie, C. and Stamegna, P. (2011). Variable HIV peptide stability in human cytosol is critical to epitope presentation and immune escape. Journal of Clinical Investigations 121, 24802492. doi: 10.1172/JCI44932DS1.
Lee, M. N., Roy, M., Ong, S.-E., Mertins, P., Villani, A.-C., Li, W., Dotiwala, F., Sen, J., Doench, J. G., Orzalli, M. H., Kramnik, I., Knipe, D. M., Lieberman, J., Carr, S. A. and Hacohen, N. (2013). Identification of regulators of the innate immune response to cytosolic DNA and retroviral infection by an integrative approach. Nature Immunology 14, 179185. doi: 10.1038/ni.2509.
Li, J., Soroka, J. and Buchner, J. (2012). The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochimica et Biophysica Acta 1823, 624635.
Mahmoudi, T., Parra, M., Vries, R. G. J., Kauder, S. E., Verrijzer, C. P., Ott, M. and Verdin, E. (2006). The SWI/SNF chromatin-remodeling complex is a cofactor for Tat transactivation of the HIV promoter. Journal of Biological Chemistry 281, 1996019968. doi: 10.1074/jbc.M603336200.
Mansky, L. M. and Temin, H. M. (1995). Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. Journal of Virology 69, 50875094.
Martin-Serrano, J., Zang, T. and Bieniasz, P. D. (2001). HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nature Medicine 7, 13131319. doi: 10.1038/nm1201-1313.
Matreyek, K. A. and Engelman, A. (2013). Viral and cellular requirements for the nuclear entry of retroviral preintegration nucleoprotein complexes. Viruses 5, 24832511. doi: 10.3390/v5102483.
Michie, C., McLean, A., Alcock, C. and Beverley, P. (1992). Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature 360, 264265. doi: 10.1038/360264a0.
Nabel, G. and Baltimore, D. (1987). An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326, 711713. doi: 10.1038/326711a0.
O'Keeffe, B., Fong, Y., Chen, D., Zhou, S. and Zhou, Q. (2000). Requirement for a kinase-specific chaperone pathway in the production of a Cdk9/cyclin T1 heterodimer responsible for P-TEFb-mediated tat stimulation of HIV-1 transcription. Journal of Biological Chemistry 275, 279287. doi: 10.1074/jbc.275.1.279.
Palella, F. J. Jr., Delaney, K. M., Moorman, A. C., Loveless, M. O., Fuhrer, J., Satten, G. A., Aschman, D. J. and Holmberg, S. D. (1998). Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. New England Journal of Medicine 339, 853860. doi: 10.1056/NEJM199808063390612.
Palmer, S., Maldarelli, F., Wiegand, A., Bernstein, B., Hanna, G. J., Brun, S. C., Kempf, D. J., Mellors, J. W., Coffin, J. M. and King, M. S. (2008). Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proceedings of the National Academy of Sciences USA 105, 38793884. doi: 10.1073/pnas.0800050105.
Pearl, L. H. and Prodromou, C. (2006). Structure and mechanism of the Hsp90 molecular chaperone machinery. Annual Review of Biochemistry 75, 271294. doi: 10.1146/annurev.biochem.75.103004.142738.
Pereira, L., Bentley, K., Peeters, A., Churchill, M. J. and Deacon, N. J. (2000). A compilation of cellular transcription factor interactions with the HIV-1 LTR promoter. Nucleic Acids Research 28, 663668. doi: 10.1093/nar/28.3.663.
Pigliucci, M. (2003). Epigenetics is back! Hsp90 and phenotypic variation. Cell Cycle 2, 3435. doi: 10.4161/cc.2.1.274.
Pittet, J. F., Lee, H., Pespeni, M., O'Mahony, A., Roux, J. and Welch, W. J. (2005). Stress-induced inhibition of the NF-kappaB signaling pathway results from the insolubilization of the IkappaB kinase complex following its dissociation from heat shock protein 90. Journal of Immunology 174, 384394.
Pollard, V. and Malim, M. (1998). The HIV-1 Rev Protein. Nature Reviews Microbiology 6, 491532. doi: 10.1038/nrmicro1819.
Quashie, P. K., Mesplède, T. and Wainberg, M. A. (2013). Evolution of HIV integrase resistance mutations. Current Opinion in Infectious Diseases 26, 4349. doi: 10.1097/QCO.0b013e32835ba81c.
Queitsch, C., Sangster, T. A. and Lindquist, S. (2002). Hsp90 as a capacitor of phenotypic variation. Nature 417, 618624. doi: 10.1038/nature749.
Ramratnam, B., Mittler, J. E., Zhang, L., Boden, D., Hurley, A., Fang, F., Macken, C. A., Perelson, A. S., Markowitz, M. and Ho, D. D. (2000). The decay of the latent reservoir of replication-competent HIV-1 is inversely correlated with the extent of residual viral replication during prolonged anti-retroviral therapy. Nature Medicine 6, 8285. doi: 10.1038/71577.
Re, M. C., Furlini, G. and La Placa, M. (1989). Rapid detection of HIV-1 in clinical samples by co-culture with heat-shocked cells. Journal of Virological Methods 26, 313317.
Ringrose, J. H., Jeeninga, R. E., Berkhout, B. and Speijer, D. (2008). Proteomic studies reveal coordinated changes in T-cell expression patterns upon infection with human immunodeficiency virus type 1. Journal of Virology 82, 43204330. doi: 10.1128/JVI.01819-07.
Roesch, F., Meziane, O., Kula, A., Nisole, S., Porrot, F., Anderson, I., Mammano, F., Fassati, A., Marcello, A., Benkirane, M. and Schwartz, O. (2012). Hyperthermia stimulates HIV-1 replication. PLoS Pathogens 8, e1002792. doi: 10.1371/journal.ppat.1002792.
Roy, S., Delling, U., Chen, C. H., Rosen, C. A. and Sonenberg, N. (1990). A bulge structure in HIV-1 TAR RNA is required for Tat binding and Tat-mediated trans-activation. Genes and Development 4, 13651373. doi: 10.1101/gad.4.8.1365.
Rutherford, S. L. and Lindquist, S. (1998). Hsp90 as a capacitor for morphological evolution. Nature 396, 336342. doi: 10.1038/24550.
Sáez-Cirión, A., Bacchus, C., Hocqueloux, L., Avettand-Fenoel, V., Girault, I., Lecuroux, C., Potard, V., Versmisse, P., Melard, A., Prazuck, T., Descours, B., Guergnon, J., Viard, J. P., Boufassa, F., Lambotte, O., Goujard, C., Meyer, L., Costagliola, D., Venet, A., Pancino, G., Autran, B. and Rouzioux, C. (2013). Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy: ANRS VISCONTI Study. PLoS Pathogens 9, e1003211. doi: 10.1371/journal.ppat.1003211.
Sangster, T. A., Queitsch, C. and Lindquist, S. (2003). Hsp90 and chromatin: where is the link? Cell Cycle 2, 165167. doi: 10.4161/cc.2.3.400.
Sawarkar, R., Sievers, C. and Paro, R. (2012). Hsp90 globally targets paused RNA polymerase to regulate gene expression in response to environmental stimuli. Cell 149, 807818. doi: 10.1016/j.cell.2012.02.061.
Schlesinger, M. J. (1990). Heat shock proteins. Journal of Biolological Chemistry 265, 1211112114.
Shim, H. Y., Quan, X., Yi, Y.-S. and Jung, G. (2011). Heat shock protein 90 facilitates formation of the HBV capsid via interacting with the HBV core protein dimers. Virology 410, 161169. doi: 10.1016/j.virol.2010.11.005.
Shimp, S. K., Chafin, C. B., Regna, N. L., Hammond, S. E., Read, M. A., Caudell, D. L., Rylander, M. and Reilly, C. M. (2012 a). Heat shock protein 90 inhibition by 17-DMAG lessens disease in the MRL/lpr mouse model of systemic lupus erythematosus. Cellular and Molecular Immunology 9, 255266. doi: 10.1038/cmi.2012.5.
Shimp, S. K., Parson, C. D., Regna, N. L., Thomas, A. N., Chafin, C. B., Reilly, C. M. and Nichole Rylander, M. (2012 b). HSP90 inhibition by 17-DMAG reduces inflammation in J774 macrophages through suppression of Akt and nuclear factor-κB pathways. Inflammation Research 61, 521533. doi: 10.1007/s00011-012-0442-x.
Siliciano, J. D., Kajdas, J., Finzi, D., Quinn, T. C., Chadwick, K., Margolick, J. B., Kovacs, C., Gange, S. J. and Siliciano, R. F. (2003). Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nature Medicine 9, 727728. doi: 10.1038/nm880.
Siliciano, R. F. and Greene, W. C. (2011). HIV latency. Cold Spring Harbor Perspectives in Medicine 1, a007096. doi: 10.1101/cshperspect.a007096.
Sollars, V., Lu, X., Xiao, L., Wang, X., Garfinkel, M. D. and Ruden, D. M. (2003). Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nature Genetics 33, 7074. doi: 10.1038/ng1067.
Solit, D. B. and Chiosis, G. (2008). Development and application of Hsp90 inhibitors. Drug Discovery Today 13, 3843. doi: 10.1016/j.drudis.2007.10.007.
Specchia, V., Piacentini, L., Tritto, P., Fanti, L., D'Alessandro, R., Palumbo, G., Pimpinelli, S. and Bozzetti, M. P. (2010). Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons. Nature 463, 662665. doi: 10.1038/nature08739.
Stanley, S., Bressler, P. B., Poli, G. and Fauci, A. S. (1990). Heat shock induction of HIV production from chronically infected promonocytic and T cell lines. Journal of Immunology 145, 11201126.
Stebbins, C. E., Russo, A. A., Schneider, C., Rosen, N., Hartl, F. U. and Pavletich, N. P. (1997). Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89, 239250. doi: 10.1016/S0092-8674(00)80203-2.
Stuchell, M. D., Garrus, J. E., Müller, B., Stray, K. M., Ghaffarian, S., McKinnon, R., Kräusslich, H.-G., Morham, S. G. and Sundquist, W. I. (2004). The human endosomal sorting complex required for transport (ESCRT-I) and its role in HIV-1 budding. Journal of Biological Chemistry 279, 3605936071. doi: 10.1074/jbc.M405226200.
Sundquist, W. I. and Kräusslich, H.-G. (2012). HIV-1 assembly, budding, and maturation. Cold Spring Harbor Perspectives in Medicine 2, a006924. doi: 10.1101/cshperspect.a006924.
Tariq, M., Nussbaumer, U., Chen, Y., Beisel, C. and Paro, R. (2009). Trithorax requires Hsp90 for maintenance of active chromatin at sites of gene expression. Proceedings of the National Academy of Sciences USA 106, 11571162. doi: 10.1073/pnas.0809669106.
Tazi, J., Bakkour, N., Marchand, V., Ayadi, L., Aboufirassi, A. and Branlant, C. (2010). Alternative splicing: regulation of HIV-1 multiplication as a target for therapeutic action. FEBS Journal 277, 867876. doi: 10.1111/j.1742-4658.2009.07522.x.
Tréand, C., Du Chéné, I., Brès, V., Kiernan, R., Benarous, R., Benkirane, M. and Emiliani, S. (2006). Requirement for SWI/SNF chromatin-remodeling complex in Tat-mediated activation of the HIV-1 promoter. EMBO Journal 25, 16901699. doi: 10.1038/sj.emboj.7601074.
UNAIDS (2013). UNAIDS Report on the Global AIDS Epidemic.
Usami, Y., Popov, S., Popova, E., Inoue, M., Weissenhorn, W. and Göttlinger, H. G. (2009). The ESCRT pathway and HIV-1 budding. Biochemical Society Transactions 37, 181184. doi: 10.1042/BST0370181.
Van Lint, C., Bouchat, S. and Marcello, A. (2013). HIV-1 transcription and latency: an update. Retrovirology 10, 67. doi: 10.1186/1742-4690-10-67.
Vozzolo, L., Loh, B., Gane, P. J., Tribak, M., Zhou, L., Anderson, I., Nyakatura, E., Jenner, R. G., Selwood, D. and Fassati, A. (2010). Gyrase B inhibitor impairs HIV-1 replication by targeting Hsp90 and the capsid protein. Journal of Biological Chemistry 285, 3931439328. doi: 10.1074/jbc.M110.155275.
Wainberg, M. A. (2009). Two standards of care for HIV: why are Africans being short-changed? Retrovirology 6, 109. doi: 10.1186/1742-4690-6-109.
Wei, P., Garber, M. E., Fang, S. M., Fischer, W. H. and Jones, K. A. (1998). A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92, 451462. doi: 10.1016/S0092-8674(00)80939-3.
Wong, K. S. K. and Houry, W. A. (2006). Hsp90 at the crossroads of genetics and epigenetics. Cell Research 16, 742749. doi: 10.1038/
World Health Organization (2012). Global Tuberculosis Report 2012.
Wyatt, R. (1998). The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 280, 18841888. doi: 10.1126/science.280.5371.1884.
Zack, J. A., Arrigo, S. J., Weitsman, S. R., Go, A. S., Haislip, A. and Chen, I. S. Y. (1990). HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 61, 213222. doi: 10.1016/0092-8674(90)90802-L.
Zhao, R., Davey, M., Hsu, Y.-C., Kaplanek, P., Tong, A., Parsons, A. B., Krogan, N., Cagney, G., Mai, D., Greenblatt, J., Boone, C., Emili, A. and Houry, W. A. (2005). Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the Hsp90 chaperone. Cell 120, 715727. doi: 10.1016/j.cell.2004.12.024.


Hsp90: a chaperone for HIV-1



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed